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Chapter 1
General introduction

This work deals with strategies for the generation of three dimensional, fully
extended arm pointing movements. These are movements where the out-
stretched arm moves from pointing at one target to another. Such a move-
ment is performed by humans with little thought, but despite the apparent
simplicity of these movements, there is much that is still unclear about the

mechanisms that generate these movements.

1.1 Trajectory formation

Early studies of arm movements with the hand constrained to a plane (and
hence two dimensional movements) showed that the hand path during such
movements is consistent, both for a single subject and between subjects
(Georgopoulos et al., 1981; Soechting & Lacquaniti, 1981). Such movements
have an invariant, single peaked velocity profile. Movements in the horizontal
plane have also been observed to follow a straight line (Morasso, 1981). These
findings suggest that such movements are planned in Cartesian coordinates
at the hand level (Hollerbach, 1982), that is, in extrinsic coordinates. This
implies that the central nervous system (CNS) later transforms the plan from
extrinsic coordinates into a pattern of joint covariation (the plan in terms

of joint coordinates). This transformation is non-linear and non-trivial be-



cause additional functional constraints are required due to joint redundancy.
(Desmurget et al., 1998).

The other option would be to plan the movements in joint coordinates -
the Cartesian coordinates at the start and the end of the movement would
be converted to joint coordinates, and then the movement would be planned
in joint space, in intrinsic coordinates. Due to the non-linear relationship
between Cartesian and joint coordinates, invariant paths in joint coordinates
do not in general represent invariant paths in Cartesian coordinates. In
contrast to the above results, some experiments suggest that invariance is not
seen in Cartesian coordinates. For example, in Atkeson & Hollerbach (1985)
it was found that the curvature of unrestrained point to point movements
in the vertical plane was dependent on the location in the workspace. In
a cylinder grasping experiment, Desmurget & Prablanc (1997) found stable
joint covariation patterns, while the spatial paths were consistently curved
and varied with respect to the orientation of the object to be grasped.

An explanation of the conflicting results mentioned previously was sug-
gested by Desmurget et al. (1997). From their experimental results and
those from other studies, they concluded that compliant and unconstrained
movements are planned differently - compliant movements (motion that is
constrained by an external contact) are planned in task space and hence show
straight line trajectories, while unconstrained movements are not planned in
task space. Desmurget et al. (1998) presented several possible explanations
for the different planning strategies. They suggested that in constrained
movements, the general strategies used by the CNS are not relevant because
of the constraints of the task. Planning planar compliant movements, which
entails constraints on the direction of the acceleration in extrinsic coordi-
nates, is easier in task space, while unconstrained movements do not need to
consider these constraints.

Alternatively, it has been suggested that the differences in curvature be-
tween horizontal and vertical movements may be due to difficulties in dealing
with gravity (Atkeson & Hollerbach, 1985), or due to distortions in the per-



ception of a straight line (Wolpert et al., 1995).

1.2 Internal models

Internal models are a way of modeling the processes in the brain from the
desired motor event to the issuing of motor commands (Kawato, 1999), and
can be used for modeling the generation of extended arm trajectories. Arm
movements are too fast for the brain to solely use biological feedback to
control the movement (Kawato, 1999). Internal models, which contain an
acquired inverse dynamics model of the arm, can be executed to achieve the
movement.

The kinematics of the arm refer to the geometrical and time-based prop-
erties of the motion - the displacements, velocities and accelerations. Kine-
matic models look at the motion without considering the forces necessary to
achieve such movements. The minimum jerk model (Flash & Hogan, 1985)
is an example of a kinematic model - it predicts straight line paths for move-
ments in a horizontal plane. After planning at a kinematic level, the forces
necessary to generate the movement must be computed. In the case of the
minimum jerk model, the necessary joint torques for these movements could
be calculated using the equilibrium point hypothesis (Flash, 1987).

The subject of dynamics deals with the forces and torques that produce
motion. The forces and torques are related to the kinematics through cou-
pled nonlinear differential equations. An example of a dynamic model is
the minimum torque-change model (Uno et al., 1989). This model predicts
hand path by minimizing the sum of square of the rate of change of torque
integrated over the entire movement.

Soechting & Flanders (1998) concluded that neither a kinematic nor a
dynamic model could successfully account for all features of arm movements,
but that movements are constrained by optimality criteria that take into

account both kinematic and dynamic considerations.



1.3 Thesis Outline

This work considers the following questions:

1. What strategies, if any, are used in extended arm movements to deal
with kinematic redundancy, that is, which orientations from the infinite
number of possibilities are selected? Can a rule valid for extended arm
movements in the entire workspace be determined? Is adherence to the
rule different during the movement and when stationary, or different

for point to point or perturbed trajectories?

2. What models can be used to describe the generation of trajectories for
extended arm movements? Do the models describe both simple point to
point movements and double step movements where the target jumps
after the movement has begun? Is a superposition strategy used, or
some other strategy? How is the torsion of the upper arm and forearm

constrained throughout the movement?

Chapter 2 presents different representations of rotations adopted in this
research. Methods for the generation of, and conversion between rotation
matrices, Fick coordinates and rotation vectors are presented, as well as

techniques for calculating the coordinate and angular velocity.

Chapter 3 introduces the concepts involved with kinematic redundancy.
It explains a solution to the degrees of freedom problem known as Donders’
law, and describes studies of the eye, eye/head system and the arm that show

the applicability of this law.

Chapter 4 presents the methods and results of an experiment designed
to test the validity of Donders’ law under a range of situations. The varia-
tion seen in the different components of the rotation vectors are compared,
and surfaces, which can act as constraints on the rotations, are fitted to the

rotation vectors that describe the movements. These surfaces are compared



for movements in several different situations. The study aims to determine
which strategies could realistically be used for constraining the orientations

of the arm.

Chapter 5 describes in more detail models for trajectory generation for
eye saccades and arm movements, and suggests some novel models. The use
of superposition to describe double step movements is explained and the im-
plications for the various models are considered. The theoretical feasibility of
these models is considered, and predictions are generated for the appropriate

schemes.

Chapter 6 presents an experiment to test the predictive powers of the ap-
propriate models presented in Chapter 5. In relation to these models, the
features of the trajectories are considered. The aim of this chapter is to find
and experimentally confirm a model that describes the full three dimensional

behaviour of the arm during extended arm pointing movements.



Chapter 2
Representations of rotations

There are many ways of parameterizing 3D rotations, and the selection of
an appropriate parameterization can aid in analysis. The representations
adopted in this research will be presented in this chapter. Unlike position,
the combination of rotations is not commutative, and with some parameteri-
zations, even the seemingly simple task of composing two rotations becomes
very difficult.

The coordinate system adopted in this research was defined such that
the z axis is straight ahead, the y axis points horizontally to the left, and
the z axis points vertically up. The origin is fixed in space. This is shown

graphically in Figure 2.1.

O

y Subject

Figure 2.1: Coordinate system (back view).

A popular way of describing the rotation of a vector is a rotation matrix.

A rotation matrix R is a 3 by 3 matrix such that a vector in the direction of



@ will be rotated to a vector b by the rotation matrix R:
b=R-d (2.1)

where - denotes matrix multiplication.
A rotation about the space-fixed z axis by 6 is given by (Haslwanter,
1995):

cosf) —sinf O
R.(#) = |sinf cos® O (2.2)
0 0 1

Similarly for rotations of ¢ about the space-fixed y axis and 1 about the

space-fixed = axis:

cos¢p 0 sing 1 0 0
Ryp)=1 0 1 0|, R()=1[0 cosyp —siny| (2:3)
—sin¢g 0 cos¢ 0 sinYy cosy

Rotation matrices can be combined by matrix multiplication - this is
equivalent to performing one rotation followed by another. For example, the
rotation of the vector @ by € about the space-fixed z axis, followed by a

rotation of ¢ about the space-fixed y axis is given by

¢=Ry(¢) R.(0)-a (2.4)

Equation (2.4) can also be reinterpreted as rotations about limb-fixed
axes, that rotate with the limb. It is equivalent to performing a rotation
about the limb-fixed y axis by ¢, then about the rotated z axis by 6. A more
complete description of this phenomenon is given in Haslwanter (1995).

A three dimensional rotation can be expressed as the composition of three
one-dimensional rotations. In robotics, a commonly used system is that
of Euler angles Craig (1986). A different system used in the occulomotor
community (which is one of many possible representations) is the Fick system
(Van Opstal, 1993). A rotation is first made about the vertical axis (), then
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aXIS
Figure 2.2: A Fick system of rotations (back view). A rotation is first made
about the fixed vertical axis with angle #r, followed by a rotation about the
rotated horizontal axis, with angle ¢z, and lastly a rotation about the visual

/ pointing axis of ¢p.

about the rotated horizontal axis (¢r), and finally about the new visual /
pointing axis (¢r), as shown in Figure 2.2. This sequence of rotations can

be written using rotation matrices:

Rr =R.(0r) - Ry (6r) - Re(Vr) (2.5)

This sequence of rotations is arbitrary, and could be replaced by a dif-
ferent sequence. Another commonly used system is the Helmholtz system
(Van Opstal, 1993), which consists of a rotation about the horizontal axis by
om, followed by a rotation about the rotated horizontal axis by 65, followed

by a rotation about the new visual / point axis by ¥ g:

Ry = R, (¢x) - R.(0n) - Re (V) (2.6)

A more efficient method can be used to describe rotations, that also avoids
the need to describe a rotation as a composition of three rotations. A non-
redundant representation will be used here - the so called ‘rotation vector’
(Haslwanter, 1995).



2.1 Rotation vectors

The rotation vector (which strictly speaking is not actually a vector) de-

scribes a rotation about an axis 7 (which is a unit vector) by the angle 6, is
defined by

o= san () o

I'— _#. A rotation vector

The inverse of a rotation vector 7 is defined by 7~
has 3 coefficients. The direction of the vector indicates the axis of rotation,
while its magnitude is a measure of the angle. The use of the length to
represent the angle can be problematic, because with angles close to 180°,
the length of the vector will approach infinity. The pointing range used for
this experiment will not come close to 180° hence this will not be a problem.

The composition of two rotation vectors, that is 7, followed by 77 is given

by

L L T T (T X T)
TpOTq =

2.8
1—7 -7, (2:8)
where X is the vector (cross) product, and - is the dot (inner) product. We
can find the rotation necessary to go from a rotation 7. (relative to some
fixed orientation) to 7; (relative to the same fixed orientation) which we will
call 7y, by letting 7, = 7" and 7, = 7 in (2.8) to give

7o Fd—Fc—F(FcXFd)
A R

(2.9)

!
The rotation of a vector 5, = [«TO Yo Zo] by the rotation represented by

/
a rotation vector 77 = [rm Ty rz] can be found using equations (A.2),(A.3)



and (A.4):

T
1
S = = *
Y L7247+ 02
z

(]‘ + Ti - T; - TE)I‘O + 2(T1:Tyy0 — 7Y + Ty20 + TszZO)
21y Ty o + 2.T0 + Yo — T2Yo + Tolo — TYo — 2raZo + 27y T2
—2r, Ty + 27,7, %0 + 27y Yo + 27y TLYo + 20 — T220 — T;ZU + 122

(2.10)

In the special case that this rotation is from the reference orientation that is
!
pointing straight ahead (5, = [1 0 O] ), the above equation simplifies to
2
= 2(r i 2.11
L+r2+r2+r? (rary +72) (2.11)
z 2(—ry +1,12)

x l—i—rfc—r;—r

VA
I
<

A rotation vector can be derived from a rotation matrix (Haslwanter, 1995):

1 Rsy — Ry 3
7= Ri3s— R 2.12
1 +R1’1 +R272 +R3’3 1,3 3,1 ( )
Ry1 — Ry

where R, , is the element in row x and column y in the rotation matrix.
The rotation vector corresponding to an orientation in the Fick system
(0F, ¢, ¥r) can be found using Equations (2.5) and (2.12):

1
1+ costcosB + cosp(cosy + cos ) + sin ¢ sin 1 sin 0 i

T(0pbr )

cos ¢ sin vy + cos f sin 1) — cos ¢ sin ¢ sin #
sin ¢ + cos ¢ cos @ sin ¢ + sin 1) sin 6
—cos O sin ¢ sin ) + (cos ¢ + cos ) sin 6
(2.13)

10



2.2 Coordinate velocity vectors

There are two measures of velocity when considering rotations - coordinate
velocity and angular velocity. Coordinate velocity, 7'7, is calculated as the
derivative of the rotation vector with respect to time (Van Opstal, 1993):

dr

= (2.14)

=

As this gives the relative displacement per time unit, it is independent of the
current position.

Velocities in Fick coordinate space can be converted to coordinate velocity
space by taking the time derivative of (2.13):

- 1

7:.0-7. ). )01 ) = . . . 2
Or-br Ve dribr) 4(005%005%005%—i—sm%sm%smg)

(1 + cos ¢ cos 9)1/} —fsing — psinf (2.15)
(cos ¢ 4 cos 0)¢ + cos ¢(f sin p + 1) sin A)
(14 cospcos ) — isin ¢ — dsin ¥

Note that the coordinate velocity is dependent not only on the velocity in

Fick angles (HF, br, wp) but also on the Fick angles themselves (0, ¢r, ¢r).

2.3 Angular velocity vectors

The angular velocity vector describes an instantaneous rotation from one
position to the next. The direction of the angular velocity vector indicates
the axis of rotation, while the length describes the speed of rotation. The
derivation of angular velocity is clearer using quaternions (which can then
be converted into rotation vectors). Appendix A contains the definition of a
quaternion.

The rotation of a vector 55 can be expressed as

5(t) = q(t)50q7"(t) (2.16)

11



Taking the derivative of this with respect to time gives:

50 = d(6)5a (1) + a(B)Fd "\ (¢) (2.17)

1

The definition of unity for quaternions says that q¢g=" = 1. The time deriva-

tive of this is:

Ggg~' +qq =0 (2.18)
= ¢ =—q""4q7" (2.19)
= q=—q4"'q (2.20)

Using these identities, and (2.16), (2.17) can be rewritten as
5(t) = dq~"a50q™" — 45oq g™
= qq'5(t) — 5(t)gq
Now using the identity for quaternions (Van Opstal, 2001) (which can be
easily obtained from (A.2)):

(2.21)

pg—qp=2p xq (2.22)
(2.21) can be simplified to
() = (4gq7") x 8(t) (2.23)

The angular velocity is related to the rotation by the kinematic relationship
(Kreyszig, 1993)

S(t) = &(t) x §(t) (2.24)

Hence we have the expression for angular velocity (as a quanternion, although

the scalar part is zero):
w(t) =24¢" (2.25)

To convert this into rotation vector notation, first expand using quaternion

multiplication.
w(t) =2(dogy " — 7-7 ' + @7 — oG+ 7% q)
W

— 9
D . (2.26)
(t) = 2(qo7 — GoT+ 7% q)

12



Note that the scalar component is zero, this is because

d(lgl) d, , .
=— (¢ +7-7)
dt dt(
= 2Gogo + 27 - 7 (2.27)
—0

and §og, ' = doqo and —¢7-7' = §- 7 Equation (2.27) equals zero because

lq| is always 1. Converting into rotation vectors using (A.4) gives:
&(t) = 2(q0q — God + 7 % q)

qogo™ + QOQU?— doqoT™ + qoT % (goT + qm'?))

~—~~ o~

ao7 + dodo (7 X 7) + go (7 x 7)) (2.28)
. .

Sq@+q-q=1
= @=1-7-q
X L (2.29)
= ¢y =1—¢y(7-7)
= @(l1+7-7)=1
1
2
= =
T R

13



Chapter 3

Background on kinematic

redundancy

3.1 Introduction

This chapter focuses on the kinematic redundancy of human limbs. Human
limbs are made up of joints, which may have more than one degree of freedom
- for example the shoulder has three rotational degrees of freedom. Due to
the redundant degrees of freedom in the limbs, a certain posture of the end
effector, whether it be the eye, head or hand, can be reached by numerous
joint configurations.

In the tasks being considered here, the extended arm has four rotational
degrees of freedom. A model of the arm being considered is shown in Fig-
ure 3.1. It should be noted that the joints have limited ranges due to physi-
ological constraints - the approximate ranges of the joints are given in Table
3.1.

The workspace for this experiment, movements in front of the body, can
be defined by half a sphere. To specify a point on this surface, only two
degrees of freedom are needed. This means that any position on the surface of
this half sphere can be achieved by an infinite number of joint configurations.

When the arm is pointing in some direction, it is easy to see that just by

14



Figure 3.1: The model of the arm used in this research. The shoulder is
approximated by a spherical joint, which can be modeled as rotations about
three intersecting axes. The rotation about these axes gives the azimuth
(azi), elevation (ele) and rotation (rot) of the upper arm. The rotation of the
forearm relative to the upper arm is known as the pronation (pro). Flexion
of the elbow was not allowed in this model. Additionally, rotation was not
allowed at the wrist (due to the brace) and so the forearm and hand were

considered as one link.

rotating the arm about its own axis, alternate configurations can be found
that still maintain the same pointing direction.

The orientation of an object after rotations along two noncolinear axes
is dependent, on the order of the rotations (Gielen et al., 1997). This means
that the orientation of a three degrees of freedom joint such as the shoulder
or eye depends on previous rotations. If attention is not paid to the torsion,
then physiologically impossible positions may result as an accumulation of
torsion. A system is required to prevent such situations from occurring.

Studying solutions to the problem of kinematic redundancy in the eye may
shed light on possible solutions for pointing with the arm. While dynamically
the properties of the upper arm and the eye are very different, both have three
degrees of freedom while only two are required for the task being considered
(pointing with the arm, or gaze fixation with the eye).

From measurements of visual after-images at various positions, Donders

discovered in 1848 that for the upright and stable head, each gaze direction

15



Joint angle range (degrees)
elevation (ele) 180
azimuth (azi) 180
rotation (rot) 90
pronation (pro) 90

Table 3.1: Approximate range of motion of the joints in terms of the joint
angles. The data is based on average values from Luttgens & Hamilton
(1997).

has a unique 3-D eye orientation (Crawford, 1998). This is despite the fact
that the eye is physically capable of rotating about the line of sight and gen-
erating many orientations that have the same gaze direction. The uniqueness
of eye orientation for any gaze direction that was found became known as
Donders’ law. It does not, however, specify which orientation is to be used.

Listing later quantified this idea by stating that the axes of rotation from
a particular reference position to any eye position will lie in a plane (Henn,
1997). This plane is now known as Listing’s plane. Hence the orientation
at any eye position is specified. These results were published and indirectly
confirmed by Helmholtz in 1867 (Crawford, 1998).

3.2 Results from studies of eye saccades

Listing’s plane can be parameterized using rotation vectors:
Ty =a-+bry+cr, (3.1)

where 7,7, and r, are components of rotation vectors. If the coordinate
system is appropriately translated and rotated (see section 4.2.4), so that
the rotations are as if they came from a certain reference position, then (3.1)

simplifies to be the Y-Z plane, that is

re =0 (3.2)

16



Such a system has the benefit that torsion is not accumulated, and is uni-
form everywhere. This has been experimentally confirmed for head-fixed, eye
saccades fixating on distant targets (Tweed et al., 1990).

However it should be noted that for other situations, Listing’s law is
modified or violated in a systematic fashion, such as when the eyeballs rotate
inwards to see a close object or during head-free gaze shifts. A more detailed

review can be found in Crawford (1998).

3.3 Results from eye and head studies

From an experiment examining gaze shifts under different situations, Glenn
& Vilis (1992) found that the orientation of the head also obeys Donders’
law. However, the orientations were not confined to a flat Listing surface,
but rather to a twisted surface. A second-order surface can be parameterized
by the equation (Glenn & Vilis, 1992):

re =d+er,+ fr,+ grz + hryr, + jr? (3.3)

The coefficient h is often called the twist score, as it is a quantitative measure
of the degree of any twist in the surface.

The surfaces for head orientations found by Glenn and Vilis were discov-
ered to be similar to the surface produced by a Fick gimbal system, with the
torsional Fick angle (1) set to zero. A gimbal is a system where the axes
are nested within each other. A Fick gimbal, shown in Figure 2.2, is where
the horizontal axis is nested in the vertical.

The Fick strategy (Hore et al., 1992) is where rotations are made where

the torsional component in Fick coordinates, 1, is set to zero. Expanding

17



(2.5) (while setting ¥r = 0) gives:

cosfr —sinfy 0 cospr 0 singp| |1 0 O
Rp(¢y =0) = |sinfr cosfr 0 0 1 0 010
0 0 1| |—singr 0 cosop| |0 O 1
-COSHF cospp —sinfp cosfpsinop
= |sinfpcos¢pr cosfp —sinfpsinpp
—sin¢p 0 Cos O
(3.4)
This can then be converted into a rotation vector using (2.12):
1 —sin HF sin d)F
= cos O sin ¢p + sin ¢p (3.5)

1 + cos @ cos ¢ + cos O + cos op
sin 0 cos ¢ + sinOp

Then the product of r,r, will be

sin @ sin ¢ cos O cos ¢ + sin Op sin ¢ cos O + sin O sin ¢ cos pp + sin O sin ¢p
(1 + cos by cos ¢ + cos O + cos ¢F)2
sin 0p sin ¢r (1 + cos OF cos ¢r + cos Op + cos r)
(1 + cosfr cos ¢ + cos Op + cos ¢F)2
sin 0 sin ¢
1+ cosfp cos ppr + cosfp + cos pp

Tyl, =

(3.6)

It can be seen from equations (3.5) and (3.6) that r, can be expressed in

terms of this product:
ry = s(ryr,), where s = —1 (3.7)

By repeating the above process in Helmholtz coordinates (2.6), then equation
(3.7) will be the same, but with s = 4+1. Thus this formula provides a simple
way of converting from coordinates in Fick and Helmholtz coordinates in the
special case that the torsional component (in Fick or Helmholtz coordinates)

is zero. s is known as the gimbal score (Glenn & Vilis, 1992). A score of

18



—1 refers to a Fick gimbal, and +1 to a Helmholtz gimbal. A score of 0 is
equivalent to a Listing’s plane (3.2). An advantage of both types of gimbals
with torsional angles of zero is that the orientation of the horizontal axis of
the limb with respect to the horizon, and with respect to the pointing arm,
remains constant.

A common example given of a Fick gimbal system is that of an earth-
fixed telescope, which can rotate about a fixed vertical axis, and a moving
horizontal axis. Although this is a multiple joint system, the Fick system can
also be used with a single joint system like the extended arm. Whereas with
the earth fixed telescope the rotation about each axis involves a separate
joint, with the arm both rotations are applied to the same joint in order.
The orientations reachable using such a sequence of rotations produce the
surface which can act as a constraint on the permissible rotation vectors.

While the head showed a twisted Fick-like surface for regular gaze shifts,
Ceylan et al. (2000) found that if pinhole goggles were worn, making the gaze
shifts for the head similar to those of an eye, the twisted surface become flat
like that for the eye. They concluded that this was because the motor system
selects appropriate rules for motor optimization based on the constraints of
the limb and the task.

The orientation of the eye in space (during head-free eye movements) was
also found to have a Fick-like surface (Glenn & Vilis, 1992). A suggested
reason for this was that the use of a Fick gimbal system means that horizontal
gaze shifts are predominantly performed by the head, whereas vertical gaze
shifts are predominantly performed by the eyes. This may serve to conserve
energy - vertical gaze shifts using the eye use much less energy than rotating

the head to achieve the same gaze shift.

3.4 Results from studies of hand movements

Straumann et al. (1991) found that the orientations of the upper arm (while

the elbow angle was fixed) during movements over a small range (£25° rela-
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tive to the forward position) were a good fit to a flat plane, suggesting that
arm rotations may also be planned on the basis of a Listing’s plane.

Over a larger range (£45°), Hore et al. (1992) observed that during
straight-arm pointing, the arm assumed a similar orientation at a particular
target irrespective of where it came from. The orientations were restricted
to a surface similar to that produced by a Fick gimbal with zero torsional
component. The twist was always in the same direction, and always less than
that for a Fick gimbal (ie the gimbal score was between 0 and -1).

During pointing movements of the arm, Miller et al. (1992) and Theeuwen
et al. (1993) also found a unique orientation of the arm for each pointing
position, with a curved rather than flat plane.

Liebermann (1998) claimed that Listing’s law was applicable for the ori-
entation of the hand, as the deviations from a flat Listing’s plane were small
(1-2% of the available range). These deviations, he suggested, could be due
to noise inherent in the system and need to be considered taking into ac-
count the desired accuracy of the task. These results are in contradiction to
the conclusions reached by Soechting et al. (1995), that Donders’ law does
not hold in general for arm movements. They suggest that the posture of
the arm at the end point is dependent on the starting point, and that kine-
matic factors alone could not predict the final posture of the arm. Instead
they propose that a minimal work strategy could be used to predict the final
orientation.

Postural invariance of the arm when reaching towards a cylinder has
been found in several studies (Desmurget & Prablanc, 1997; Soechting &
Flanders, 1993; Paulignan et al., 1997), and also for a small sphere (Grea
et al., 2000). Posture is defined as a vector made up of the joint angles of
the arm. Desmurget et al. (1998) noted that the posture of the end point
is varied systematically as a function of the movement starting point. It is
important to note that the findings provide evidence that the final posture is
planned in advance, and not that there is a unique correspondence between

an object location and posture (Grea et al., 2000).
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Recently, in Admiraal et al. (2002), it was found that the fit of rotation
vectors to a surface is different when the arm is stationary and when the arm
is moving, in that the scatter, or thickness, of the surface was found to be

less when the arm is stationary compared to when it is moving.

3.5 Double step paradigm

The double step target displacement paradigm (Georgopoulos et al., 1981;
Soechting & Lacquaniti, 1983; Flash & Henis, 1991) is where a target is
initially set for the subject to move towards, then a certain time after pre-
sentation of the first target, known as the inter-stimulus interval (ISI), the
target jumps instantly to another location.

In an analysis of eye saccades using the double-step paradigm, Minken
et al. (1993) found that the double-step paradigm sometimes produced strongly
curved saccades. Listing’s law was obeyed equally well in these cases even
though they are not single axis rotations (as are point to point saccades).

Flash & Henis (1991) used the double-step paradigm to test a model of
trajectory generation for compliant arm movements in a horizontal plane.
They found that the resultant trajectory plan could be modeled as the su-
perposition of the original trajectory plan in extrinsic coordinates (before
the perturbation) added to a second trajectory plan for a movement from
the first to the second target location. This issue will be examined in more

detail in Chapter 5.
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Chapter 4

Kinematic redundancy

strategies

4.1 Introduction

The aim of this experiment was to test Donders’ law for the extended arm
during a pointing task, and to test the goodness of fit of various surfaces to

the orientation of the arm under different conditions.

4.2 Methods

4.2.1 Experimental setup

The subjects were required to point towards virtual balls, back projected on
a screen (using a Barco Ltd projector). The virtual balls, generated by an
OpenGL program running on a Silicon Graphics Octane workstation, were
produced by means of different images presented to the left and right eyes (at
60Hz to each eye) using Crystal Eyes LCD stereo glasses which caused the
subject to perceive the balls to be in front of the screen. The experimental
setup is shown in Figure 4.1.

Throughout the experiments, data were collected by the placement of
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Figure 4.1: Experimental setup

14 infrared emitting diodes (IREDs), using the Northern Digital Optotrak
system, to determine the location and orientation of the arm. The wrist and
the forearm were considered as a single joint; this was forced on the subjects
by use of a wrist brace to prevent movements at the wrist. Exo-skeleton
frames were used to measure the rotations and position of the joints, as used
in Liebermann (1998):

e The shoulder was defined as the centroid of a flat isosceles triangle,
with its base fixed above the acromion, and positioned so that the base

is orthogonal to the screen.

e The frame attached to the upper arm was rhomboidal, with its lower

corner placed on the axis of rotation of the elbow joint.

e The forearm frame was also rhomboidal, but smaller, and attached to
the wrist, measuring the rotations of the combined wrist/hand joint,

and the position of the wrist.
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e Two markers were attached to the index finger to provide the position
of the end of the arm.

Redundant markers were used in order to have usable data when some mark-
ers were not recorded by the Optotrak. Markers not recorded were sometimes
recovered using interpolation.

The data were collected in the coordinate system of the Optotrak, then
transformed into a coordinate system relative to the screen. The data were
collected at 100Hz, and smoothed by a 6th order Butterwoth filter. A point
in the middle of the left edge of the screen was defined as the origin. The
subjects stood so that their parasaggital plane was perpendicular to the
screen, and the coordinate axes were defined so that the x axis points staight
ahead (into the screen), the y axis points horizontally to the left, and the z
axis points vertically upward (see Figure 2.1). A structure with markers was
placed at the origin of this coordinate system, so that there was a marker at
the origin, and one at 15cm along each of the x, y and z axes. By recording
the location of these markers in Optotrak coordinates for a period of ten
seconds, a homogeneous transformation (Craig, 1986), represented as a 4 by
4 matrix, between the two coordinate systems was determined using linear
regression.

As extended arm movements were considered, the objects were positioned
to appear just beyond the finger tip (so that the subject’s arm would not
interfere with the perception of the target). The locations of the targets are
shown in Figure 4.2.

It is possible from the markers to determine 5 joint parameters that fully
define the orientation and rotation of the arm, while here, as only extended
arm movements are being considered, only 4 parameters are being considered
(see Figure 4.3). In addition, it is possible to calculate the location of the
end effector in 3D space, and to generate rotation vectors for the arm (see
section 4.2.4).
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Figure 4.2: Locations of the targets. The central target » was positioned to be
straight ahead just beyond the finger tip, at shoulder height. The location
of the other targets relative to this are shown in the diagram. Target w
was only used for subjects 1 and 2. The rotations are about a body fixed

coordinate system with its origin at the shoulder.

4.2.2 Experimental protocol

Initially, the subjects were presented with a random display of balls to point
at, to give them time to become familiar with operating in the environment.
No measurements were taken during this time.

The subjects were asked to point with the arm straight ahead at shoulder
level. This was recorded by the Optotrak for 10 seconds, and used for the
initial reference position for generating rotation vectors.

Two types of movements were presented. The first were point to point,
where the subject began with the arm pointing at some point (A), then at
the start of the event the ball moved to a new location (B) to which the
subject then needed to point at. The second type of movements were double
step movements. They began like the point to point movements, however
after the target in the new location has been presented (B), at some later
time, the target jumped to a third location (C), to which the subject needed

to point at instead of the first target. The experiment was divided into four
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para-sagittal plane

shoulder /

subject

vertical plane including
shoulder-wrist axis
Figure 4.3: Extended arm joint parameters - three are required to define
the orientation, treating the hand and forearm as one joint: azimuth(azi),
elevation(ele), rotation (rot) of the upper arm, and pronation(pro) of the
forearm (based on notation from Grea et al. (2000)). These joint angles

correspond to those shown in the model of the arm in Figure 3.1.

sets. Each set used two Inter Stimulus Intervals (ISI), defined as the time
between the time the second (B) and third (C) targets were presented in the
double step case. The ISI times used were 50ms & 300ms, 100ms & 400ms,
150ms & 550ms and 200ms & 700ms. This broad range of ISI times, including
times shorter and longer than reaction time, were selected to investigate the
different strategies depending on the time of switching.

Within each of these four sets, the movements were divided into 4 blocks,
with the movements in each block beginning at the same point. The move-
ments considered are shown in Table 4.1.

The single step (control) movements were selected so that for each double
step movement, there would be a control movement corresponding to an
unperturbed movement from the starting position to the first target, and
another control movement from the first target to the second target. For
example, the double step movement r — s — v had the corresponding

control movements r — s and s — v.
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Starting at r

Starting at s

Starting at ¢

Starting at u

Double step

movements

r—s—%u

r—s—t

s—t—u

t—u—s

Uu—Ss—v

(r—1t—u)

(r —t—w)

t—u

(t = w)

r— s s —t

(r—1)

Control (point

S — v

to point movements)

Table 4.1: The movements performed in each trial, from the targets shown

in Figure 4.2. Those in brackets were only performed for subjects 1 and 2

Each block consisted of 100 movements - each control movement was
repeated 10 times and each double step movement was repeated 5 times, for
each ISI. Between movements, there was a break of one second. A short
rest was given between each block, and a longer rest was given between sets.
The order of presentation of movements with the same starting location was

randomized so the subject would not be able to predict the next movement.

4.2.3 Instructions to subject

The following instructions were read to the subject at the beginning of the

experiment:

e You are free to drop out of the experiment at any time without any

further explanation.

e For all the experiments, please stand straight, and try not to rotate

your torso.

e Each movement will begin with a white ball. When you see the white
ball, point towards the ball with your index finger. As with all the
pointing, the ball will be just beyond your fingertip.
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e For each block of movements, the ball will begin at the same location,

although this may be different between blocks.
e When the ball turns red, this means that the ball is about to move.

e The ball will then turn green. You need to move your arm so that your

index finger points to the current location of the ball.

e In some cases, the ball will then jump to a new location. If this occurs,

you need to point to the ball at the new location.
e You may rest your hand on the stand when the ball disappears.

e There will be time to rest between blocks.

4.2.4 Techniques of analysis

The rotation vectors need to be extracted from the 3D position data of the
markers. The rotation vectors considered here are those of the rotation of the
upper arm, and the forearm segments. The rotations were initially calculated
relative to the reference position defined at the beginning of each trial, when
the subject pointed straight ahead at shoulder height for 10 seconds.

A set of axes was defined based on the markers, shown in Figure 4.4, at
the reference position, and at each time step. The rotation matrix R (a 3 by
3 matrix) that defined the rotation from the reference axes (A) to the axes

at each time step (B) can be stated as:
RA =B (4.1)
and hence can be found by
R=BA™" (4.2)

More general methods, using singular value decomposition (Soderkvist &

Wedin, 1993; Arun et al., 1987), were found to give the same results.
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Figure 4.4: A set of axes was defined based on the forearm markers. The
x-axis is defined as the unit vector in the direction from marker 4 to marker
2. The y-axis is the unit vector in the direction from marker 3 to 1. The
z-axis (coming out of the page) was calculated by the cross product of the x
and y-axes. A similar definition was used for the upper arm. The origin is

located at the intersection of the three axes.

The rotation matrix R was then converted to a rotation vector using
equation (2.12).

In order to fit the data to the various surfaces that have been suggested
(i.e., those in Equations (3.1),(3.3),(3.7)), it is necessary first to ensure that
the rotation vectors are in the appropriate frame of reference.

In the eye, there is a reference position, known as the primary position,
which is the unique position such that from this position, any other position
can be reached by a rotation where the axis of rotation lies within Listing’s
plane. If this is the same as the reference position used for calculating rotation
vectors, then in the eye, the torsion is always zero (i.e. 7, = 0). It is
possible to recalculate the rotation vectors so they will be as if they came
from the actual primary position, which will not necessarily be the same as
the reference position used in the experiments. The primary position will be
orthogonal to the plane of rotation vectors.

However, for second order surfaces there is no vector that is orthogonal
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to the plane (Gielen et al., 1997). If the second order terms are small, then
fitting a flat plane will give similar coefficients to that for a second order
surface. So the same transformation was applied for all the surfaces.

These calculations were performed based on the description in Tweed
et al. (1990). First, the plane needs to be shifted so that the reference position
will lie in the plane. If the parameter a in equation (3.1) is not zero, then
the reference position does not lie in the plane. However, the rotation vector
e = [a 0 O]I is in the same direction as the reference position [1 0 O]I,
but will lie in the plane. So by rotating from this position rather than
the reference position, the plane will pass through the origin. This can be
achieved by composing the inverse of this vector with the rotation vectors, ie

the rotation vector r becomes roe™! (e7! is easily calculated as e™! = —¢ =

!
[—a 0 0] ).
Next, the plane should be rotated so that it will have the property that
the torsion is zero in the plane, i.e. 7, = 0. This will enable Listing’s law to

be easily seen. The normal vector to the recalculated plane will be given by

1
—b
. —c
e (43)
The rotation vector that then represents a rotation to the current represen-
tation from one where the normal vector of the plane will point down the z
axis (ie so the rotation vectors in the plane will have zero torsion) can be

obtained by performing the Clifford product (Tweed et al., 1990):

®

pP=—5—=

-V, x1
Ve

(4.4)

where 7 is a vector point in the direction of the z axis. So composing a
rotation vector r with the inverse of the vector p will give the rotation p~!or.
The plane will now be equivalent to the Y-Z plane.

By fitting a surface after these rotations it should be possible to see if it

is better modeled by a flat plane, or a twisted surface. In terms of equation
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(3.3), h can be considered as the twist score if it is not a flat plane. The
rotation vectors were fit, after rotation, in a least squares sense to the 3
surfaces - a flat plane (3.1), a second order surface (3.3) and gimbal-like
surface (3.7).

For the sake of comparison, the surfaces were fit to stationary points and
non-stationary points. Additionally, to test if Donders’ law applies differently
during single step and double step movements, the fit of the surface was
compared for both cases.

The “thickness” of the surfaces will be calculated to give a sense of how
good a fit the surface is. This is defined here as the standard deviation of
the distance from the plane in the torsional (r,) direction (Tweed & Vilis,
1990a).

Additionally, the variation of torsion (r,) was compared to the variation

in the other components of the rotation vectors (r, and r,).

4.3 Results

In the range of rotations being considered in this study, there is an approxi-
mately linear relationship between the rotation vector and the angle (because
tan(f) ~ 6 for small angles), so for ease of understanding, the axes will be

marked in degrees.

4.3.1 Variation at movement endpoints

The variation of the rotation vectors at the movement endpoints were com-
pared. Figures 4.5 and 4.6 show the range of rotation vectors of the forearm
and the upper arm for subject 1. For both the forearm and the upper arm,
the left column shows a ball around the target location - the spread of val-
ues in the 7, and r, components is approximately equal - these are probably
errors in locating and pointing to the target.

However, in the other two columns, an elliptical shape can be seen, with

the major axis of the ellipse roughly parallel with the r, axis. This shows
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Figure 4.5: Fnd point spread
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that there is much greater variation in the r, component than the other
two components. The variation in the torsion at the start of the movements
(shown in blue) is less than the variation at the end of the movements.

The reason why the major axis of the ellipse is not parallel to the torsional
axis is because of the definition of the coordinate axes. The r, component is
the rotation relative to a space-fixed axis, and not to a limb fixed axis. This
is known as the problem of “false torsion” (Haslwanter, 1995).

The major axis of the ellipse covering the points is shorter for upper arm
movements, indicating less variation in the torsion. For some subjects, for
example for subject 3, the difference in variation between the components is
negligible for rotation vectors of the upper arm. The distribution of rotation
vectors at a point for this subject is approximately circular. This can be seen
in Figure 4.7.

Graphs for the other subjects can be found in Appendix C.

To summarize the results of the variation at the end points, the standard
deviation in the 7., r, and r, components was calculated for movements
ending at each end point. The results for the forearm and upper arm are
presented in Figures 4.8 and 4.9 respectively.

If the torsional component (r,) is planned to a similar degree of accuracy,
it would be expected that the variations in r, at the endpoints would be the
same as those found in r, and ..

For the forearm, the variation in the torsional component (r,) can be seen
to be significantly larger than the other components (this was confirmed by a
t-test at the 0.2 level compared to one of the other components in 73% of the
cases.) A similar result was found for the upper arm, although for some sets,
such as the one shown in Figure 4.7 the variation between the components

is very similar.
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Single step Double step

Standard deviation at endpoint (°)

Figure 4.8: End point variation of rotation vectors of the forearm in compo-
nents for the subjects 1-5. The letters (7,s,etc) indicate the target position
(see Figure 4.2). The bars show the mean of the standard deviation of each
component of the rotation vector at each endpoint, while the error bars show
it’s standard deviation. The left column is for single step movements, the
right column for double step movements. It is clearly seen that the variation

in 7, (in red) is greater than that in r, and r,.
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Figure 4.9: End point variation of rotation vectors of the upper arm in com-
ponents for the subjects 1-5. The letters (7,s,etc) indicate the target position
(see Figure 4.2). The bars show the mean of the standard deviation of each
component of the rotation vector at each endpoint, while the error bars show
it’s standard deviation. The left column is for single step movements, the
right column for double step movements. Unlike the forearm rotations, the

variation is not very different between the components.
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4.3.2 Effect of considering orientation relative to start-
ing point

In Hore et al. (1992), it was mentioned that the constraints on orientation
were not dependent on the starting orientation of the hand. With a Fick
gimbal rule, the orientation of the hand with respect to the horizon remains
constant. They observed that when subjects were told to begin with different
starting orientations, this orientation (with respect to the horizon) was fixed.

As no explicit instructions were given to the subjects about starting ori-
entations, different starting orientations could be seen for the same starting
point. In order to remove this effect each movement was considered as a
rotation from its starting point. To allow movements starting from different
starting points to be compared together, the rotation vectors for movements
from a particular starting point were composed with the average starting
orientation at that starting point.

To test whether this improved the fit to the surfaces, the thickness of
a second order surface was compared, for movements considered relative to
their starting points, and those unchanged. The results of this can be seen
in Table 4.2.

From the table, for most movements, a slight improvement can be seen
in using the modified method, although for some movements method 1 is
equally as good or better. The values of thickness of the fitted surfaces for
the forearm for all subjects were significantly better (t-test at 0.15 significance
level) using Method 1, although this was not seen for the upper arm (this
may be due to the larger values of thickness observed for the forearm).

Hence, this operation will be performed for the rest of the results, in order
to remove the effect of the starting configuration. While the effect of this
operation is small when fitting a surface to the rotation vectors from many
movements, when considering the behaviour of individual trajectories (as is
performed in Chapter 6), this operation can have a significant effect on the

results.
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Forearm Upper arm

Subject 1 2 3 4 5 1 2 3 4 5
Set 1:

Method 1 3.53° 3.43° 5.70° 3.86° 8.91° | 3.31° 1.85° 3.15° 1.69° 6.28°
Method 2 3.40° 3.46° 3.90° 2.97° 7.99° | 3.60° 1.84° 2.46° 1.66° 5.47°
Set 2:

Method 1 3.32° 3.66° 3.39° 4.04° 6.80° | 2.46° 2.17° 2.11° 2.50° 5.45°
Method 2 3.12° 3.71° 3.36° 4.14° 5.53° | 2.70° 2.23° 2.14° 2.48° 4.54°
Set 3:

Method 1 5.64° 4.22° 3.78° 4.58° 4.72° | 3.36° 2.69° 2.22° 2.70° 4.29°
Method 2 4.30° 4.01° 3.51° 3.70° 4.82° | 3.12° 2.61° 2.27° 2.14° 4.33°
Set 4:

Method 1 2.84° 3.84° 3.51° 5.50° 5.92° | 2.63° 2.76° 2.30° 2.35° 4.88°
Method 2 2.83° 3.80° 3.32° 4.82° 4.75° | 2.61° 2.77° 2.24° 2.20° 4.88°

Table 4.2: Thickness of second order surfaces for subjects 1-5, Sets 1-4 for
forearm and upper arm movements. Method 1 fits the rotation vectors rel-
ative to the reference position. Method 2 first finds the rotation vectors
relative to the start of the movement, then this is composed with the average

starting position for rotation vectors from this point.

4.3.3 Distribution of rotation vectors throughout the

workspace

The rotation vectors of the forearm and upper arm, for two representative
cases are shown. Figure 4.10 is a case with a (relatively) small range of of r,
values, while Figure 4.11 has a large range of r, values.

The workspace was also divided to see whether a better fit to the surfaces
would apply for smaller regions. The workspace was trisected in both the 7,
and r, components, to give nine subspaces. This is shown visually for the
side and top view for forearm and upper arm rotations in Figure 4.12 and
4.13. Figure 4.12 shows that the variation in r, is greater than that of the
other components, while in Figure 4.13, for the upper arm, the variation in
the components is more similar. The variation in torsion is less when divided

up in this way. This will be quantified in the following section.
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Figure 4.10: Rotation vectors for the forearm and upper arm during 100 3D
single step and double step movements at each time step for Subject 2, Set

1. The range of r, values is relatively small.

FOREARM

-20-10 0 10
r
b3 y

Figure 4.11: Rotation vectors for the forearm and upper arm during 100 3D
single step and double step movements at each time step for Subject 5, Set

2. A large range of r, values can be seen.
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Figure 4.12: Rotation vectors for the forearm and upper arm divided into 9 smaller workspaces, for subject 1, set 3.

F' indicates forearm rotations, and U upper arm rotations.
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Figure 4.13: Rotation vectors for the forearm and upper arm divided into 9 smaller workspaces, for subject2, set 4.

F indicates forearm rotations, and U upper arm rotations.



4.3.4 Constraints on rotation vectors

Three different constraints have been suggested for constraining orientations
in rotation vector space. These constraints are expressed in the form of
a surface of permissible rotation vectors. The three surfaces are the flat
Listing’s plane, a second order surface, and a gimbal-like surface.

To test which of these surfaces provides the best description of the con-
straint on the rotation vectors during these movements, the best fit of these
surfaces was found for the data in a least-squares sense. To examine how
good these surfaces are as a description of the constraints, the goodness of
the fit (measured by the thickness of the surface), and the consistency of the
parameters will be examined.

Typical examples of these fits can be seen graphically in Figures 4.14 and
4.15. The rotation vectors are plotted together with the surfaces.

Due to the operations involved in making the orientations relative to the
reference position, the representation of the orientations in rotation vector
space are evenly distributed about the flat surface. In this sense, the flat
plane provides a good average description of the rotations vectors found.

The second order surfaces seen are curved, with a small amount of twist.
The fact that a curved surface was the best fit second order surface (rather
than a flat plane, which would be produced if the last 3 coefficients were
zero in equation (3.3)) means that a curved surface is a better fit than a flat
plane.

The gimbal-like surface appears very similar to a flat plane - very little
twist is seen. This means that the best gimbal-like surface that could be fit
is very similar to a flat plane.

The parameters of the second order surfaces and the gimbal score for each
subject and set that were calculated are displayed in Tables 4.3 and 4.4. The
parameters for the flat plane are not displayed because the rotation vectors
were rotated in order that equation (3.2) would hold.

For the forearm, while the twist score (h) is mostly negative, there are

several examples of where large positive values are found, indicating a twist
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Figure 4.14: Rotation vectors for Subject 2, set 4 for the forearm and the
upper arm. Also shown are the best fit plane, second order surface, and

gimbal-like surface.

44



Behind view

FOREARM
v

flat
plane
&

20

second
order

—~

20

UPPER20
ARM

—~
L 0
‘_N

flat
plane _oq

-30-20-10 0 10
r.©)

2
second
order

_20 _
-30-20-10 0 10
r 0
y

-20

-20

Side view

20

20

20

20

°§X 0
-20

20

5:; 0
-20

20

—
= 0

-20

Above view

phast™®

30-20-10 0 10
r.©

phast™®

30-20-10 0 10
r.O

Shast "
30-20-10 0 1
r O

y

Figure 4.15: Rotation vectors for Subject 3, set 3 for the forearm and the

upper arm. Also shown are the best fit plane, second order surface, and

gimbal-like surface.

45



Set d e f g h j S
Subject 1
1 -0.008447 | -0.009289 | -0.052489 | 0.338877 | -0.381586 | 0.415326 | -0.145370
2 -0.017528 | 0.056516 | 0.096816 | 0.418025 | -0.289868 | -0.159763 | -0.035380
3 -0.038689 | 0.173062 | 0.182283 | 2.780967 | -0.470340 | -0.633707 | -0.062614
4 -0.004798 | -0.059253 | -0.053044 | 0.579002 | 0.169736 | 0.084269 | 0.064056
Subject 2
1 0.003649 | 0.026955 | 0.030033 | -0.096081 | -0.242675 | -0.144035 || -0.192675
2 0.001115 | -0.025864 | 0.037140 | 0.482575 | -0.011960 | -0.339512 || -0.150335
3 -0.000611 | -0.134718 | -0.053014 | 1.489031 | 0.205208 | -0.675133 | -0.156943
4 -0.010089 | -0.120091 | 0.051304 | 2.957662 | 0.908857 | -1.124890 | 0.069704
Subject 3
1 -0.385066 | -0.289486 | -1.470391 | 0.638212 | -1.307160 | -1.199910 | 0.002512
2 -0.086934 | -0.837847 | 0.040417 | -1.592400 | -1.309902 | 1.051888 || -0.079295
3 -0.026528 | -0.700597 | 0.218490 | -2.472881 | -0.232724 | 1.225703 | -0.003394
4 0.010540 | -0.284482 | 0.489194 | -1.407343 | 0.417429 | 1.689425 | -0.009640
Subject 4
1 0.008858 | 0.097937 | 0.043550 | 0.325320 | -0.315618 | -0.486323 | -0.241563
2 0.001949 | 0.055227 | 0.012567 | 0.305771 | -0.377662 | -0.190073 | -0.405073
3 -0.072070 | -0.230205 | 0.384982 | -0.380306 | -0.254365 | -0.660939 | -0.156080
4 0.075517 | 0.390192 | 0.072054 | 0.574984 | -0.434181 | -1.365278 | -0.254946
Subject 5
1 0.029966 | 0.369797 | -0.130575 | 1.515359 | -0.098192 | -1.132542 | 0.063204
2 0.017395 | 0.205631 | 0.130691 | 1.890623 | 1.165214 | -1.352499 || 0.568675
3 0.041681 | 0.562959 | -0.074129 | 1.746618 | 0.461363 | -0.819242 | 0.096126
4 0.016782 | 0.313448 | -0.089161 | 1.072558 | -0.041693 | -0.376280 | 0.091691

Table 4.3: Parameters of second order (d-j) and gimbal (s) surface fit to data

for the forearm.
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Set d e f g h j S
Subject 1
1 0.009701 | 0.134921 | -0.150501 | 0.058824 | -0.488272 | 0.337278 | -0.061026
2 -0.034733 | 0.106341 | 0.196376 | 0.158002 | -0.218414 | -0.265220 | -0.005103
3 0.001801 | 0.137074 | 0.001273 | 0.451447 | -0.094167 | -0.023114 | 0.008089
4 0.008347 | -0.009145 | -0.066692 | -0.018922 | 0.071518 | 0.129513 | 0.032944
Subject 2
1 -0.006850 | 0.087362 | 0.033371 | 0.139463 | -0.481659 | 0.015245 | -0.055954
2 -0.008661 | 0.063494 | 0.113327 | -0.033919 | -0.268843 | -0.244151 | -0.058434
3 -0.002492 | 0.044825 | 0.018801 | 0.039020 | -0.408998 | 0.049321 | -0.078882
4 -0.006242 | -0.032182 | 0.048630 | 0.752270 | -0.050517 | -0.224167 | -0.016369
Subject 3
1 0.032123 | 0.354690 | -0.184329 | 0.885276 | -0.631129 | 0.235993 | -0.030295
2 0.005716 | 0.076273 | -0.006604 | 0.194386 | -0.029035 | 0.017630 | -0.005076
3 -0.002324 | -0.129976 | -0.038205 | -0.797609 | -0.426739 | 0.161868 | -0.116377
4 -0.010221 | -0.158729 | -0.283794 | -0.251591 | -1.571283 | -1.364667 | -0.079147
Subject 4
1 -0.030892 | 0.131467 | 0.294263 | 0.035608 | -0.315464 | -0.528033 | -0.003059
2 0.001702 | 0.118376 | 0.106802 | -0.089193 | -0.536752 | -0.401124 | -0.001296
3 -0.035879 | -0.410186 | -0.129715 | -0.926266 | -0.725549 | -0.237182 || 0.005402
4 0.000849 | 0.065549 | 0.079768 | 0.201168 | 0.364677 | 0.113212 | 0.000723
Subject 5
1 0.017581 | 0.370465 | 0.350302 | 0.725894 | -1.411697 | -2.162019 || -0.392372
2 -0.018909 | 0.204400 | 0.486142 | -0.283048 | -0.699817 | -1.745229 | -0.114350
3 0.011930 | -0.070443 | -0.101643 | -0.689038 | -0.992718 | -1.076557 | -0.553070
4 0.007838 | 0.023538 | -0.286287 | -1.236442 | -0.316863 | -1.523820 | -0.351649

Table 4.4: Parameters of second order (d-j) and gimbal (s) surface fit to data

for the upper arm.
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in the opposite direction (for example, Subject 2, Set 4 and Subject 5, Set
2). The magnitude of the values is considerably smaller than those found by
Hore et al. (1992), who found values of the twist score ranging from -0.61
to -1.10. The twist scores are not very consistent across subjects and even
between sets.

The first three parameters (d,e and f) are generally close to zero - this is
because these parameters will be fit to a flat plane (which in this case will
be r, = 0) if the other parameters are small. The parameters g and j refer
to the curvature of the surface. Although there are a wide range of values
for these parameters, for many of the subjects they are similar to the extent
that they are of the same sign and order of magnitude.

A similar phenomenon is seen with the gimbal score for the forearm -
while most of the values are negative, indicating that the gimbal is twisted
in the direction of a Fick gimbal (see Figure 4.18), albeit by a small amount,
there are several positive values. The gimbal scores for Subject 5 are all
positive. This suggests that for the forearm, a different strategy is used by
this subject compared to the other subjects.

The upper arm shows more consistency in the results, with the twist score
for most of the sets negative. The gimbal score is also generally negative,
although its magnitude is very close to zero (apart from subject 5). The
small values for the Gimbal score suggest that, at least for the range being
considered here, a gimbal-like surface does not provide a better model for
specifying the orientation of the upper arm or forearm than a flat plane
(which has a gimbal score of zero).

To show graphically the second order and gimbal-like surfaces, the side
views were plotted for each subject and set, without the rotation vectors
(for clarity). This is shown for the forearm (Figure 4.16) and the upper arm
(Figure 4.17).

The goodness of the fit to the planes are compared by considering the
“thickness” - the standard deviation of the distance from the plane. These

results are summarized for forearm and upper arm movements in Tables 4.5
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Subject 1 2 3 4 5
Set 1:
Flat plane whole WS 3.58° 3.54° 4.06° 3.28° 8.11°
divided WS 2.79° 2.87° 3.28° 2.66° 5.94°
Second order whole WS 3.40° 3.46° 3.90° 2.97° 7.99°
divided WS 2.43° 2.65° 3.09° 2.61° 5.59°
Gimbal whole WS 3.58° 3.50° 4.08° 3.05° 8.20°
divided WS 2.98° 3.21° 3.67° 2.88° 7.23°
Set 2:
Flat plane whole WS 3.17°  3.81° 4.06° 4.48° 6.06°
divided WS 2.42° 3.14° 3.13° 3.74° 4.92°
Second order whole WS 3.12° 3.71° 3.36° 4.14° 5.53°
divided WS 2.31° 2.88° 2.89° 3.46° 4.37°
Gimbal whole WS 3.21°  3.77°  4.05° 4.20° 6.24°
divided WS 3.00° 3.51° 3.58° 4.00° 5.82°
Set 3:
Flat plane whole WS 4.48° 4.06° 3.82° 3.85° 5.01°
divided WS 3.09° 3.22° 3.04° 3.45° 3.74°
Second order whole WS 4.30° 4.01° 3.51° 3.70° 4.82°
divided WS 2.90° 3.08° 2.80° 3.20° 3.41°
Gimbal whole WS 4.48° 4.07° 4.01° 3.93° 5.38°
divided WS 3.61° 3.66° 3.71° 3.67° 4.82°
Set 4:
Flat plane whole WS 2.95°  4.06° 3.59° 5.09° 4.86°
divided WS 2.40° 3.06° 2.88° 3.58° 4.14°
Second order whole WS 2.83° 3.80° 3.32° 4.82° 4.75°
divided WS 2.19° 2.98° 2.72° 3.34° 3.92°
Gimbal whole WS 2.94°  4.12° 3.69° 5.27° 4.94°
divided WS 2.80° 3.50° 3.33° 4.54° 4.58°

and 4.6.

From these tables, it can be seen that the thickness for the flat planes
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Table 4.5: Summary of thickness of different surfaces for forearm movements.
The values represent the standard deviation of the distance from the surface
in the r, component. A comparison is made between the whole workspace,

and the weighted average when divided into 9 equally sized (in 7, and r,)

(see Figure 4.7) was significantly greater than that found in Liebermann

(1998) (mean 1.56°), while of a similar magnitude to that found in Hore



Subject 1 2 3 4 5
Set 1:
Flat plane whole WS 3.93° 1.99° 2.49° 1.94° 5.76°
divided WS 3.10° 1.53° 2.08° 1.41° 4.33°
Second order whole WS 3.60° 1.84° 2.46° 1.66° 5.47°
divided WS 2.80° 1.47° 1.96° 1.31° 3.82°
Gimbal whole WS 3.87° 1.95° 2.52° 2.33° 5.75°
divided WS 3.38° 1.77° 2.24° 1.71° 5.41°
Set 2:
Flat plane whole WS 2.78° 2.37° 2.16° 2.77° 4.82°
divided WS 2.12° 1.96° 1.93° 2.29° 3.48°
Second order whole WS 2.70° 2.23° 2.14° 2.48° 4.54°
divided WS 1.87° 1.82° 1.83° 2.18° 3.27°
Gimbal whole WS 2.87° 2.37° 2.26° 4.12° 5.40°
divided WS 2.70° 2.21° 2.05° 3.52° 4.52°
Set 3:
Flat plane whole WS 3.23°  2.65° 2.29° 2.44° 4.50°
divided WS 2.25° 2.37° 2.05° 1.92° 3.44°
Second order whole WS 3.12°  2.61° 2.27° 2.14° 4.33°
divided WS 2.11° 2.23° 1.86° 1.79° 3.19°
Gimbal whole WS 3.25°  2.63° 2.36° 2.77° 4.97°
divided WS 2.55° 2.50° 2.19° 2.33° 4.12°
Set 4:
Flat plane whole WS 2.66° 2.80° 2.29° 2.25° 5.20°
divided WS 2.18° 2.60° 2.01° 1.90° 3.74°
Second order whole WS 2.61°  2.77°  2.24° 2.20° 4.88°
divided WS 2.00° 2.36° 1.87° 1.75° 3.40°
Gimbal whole WS 2.66° 2.81° 2.38° 2.57° 5.61°
divided WS 2.41° 2.69° 2.16° 2.27° 5.18°

Table 4.6: Summary of thickness of different surfaces for upper arm move-
ments. The values represent the standard deviation of the distance from
the surface in the r, component. A comparison is made between the whole
workspace, and the weighted average when divided into 9 equally sized (in

ry and r,) bins.
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et al. (1992). There was a small improvement for each subject for the fit
to a second order surface (however, the fit to such a second order surface
will never be worse than that to a flat plane). The lack of improvement
for a second order fit may have been due to the magnitude of the rotations.
Straumann et al. (1991) found that over a range of +£25°, a flat plane (rather
than a second order surface) constrained the rotation vectors of upper arm
movements. Hore et al. (1992) found that over a range of +30°, the region
of the twisted surface that is relevant is approximated well by a flat plane.
This is similar to the range of orientations used in this experiment. This
could explain why the twist may only have been noticeable if the range of
rotations was larger.

The second order surfaces that were fitted generally had the same general
shape (see Figure 4.16 and 4.17), due to similarity in the values of the cur-
vature (g and j) and the twist (h) for each subject, although significant vari-
ation is seen between sets. Furthermore, variation is seen between subjects.
For the forearm, the surfaces fit to the movements of subject 4 showed the
closest fit to a Fick gimbal, and for the upper arm subject 5 showed surfaces
with a small gimbal score. In general, however, the amount of twist shown
when fit to a Fick gimbal was negligible, although it was usually twisted in
the direction of a Fick gimbal (see Figure 4.18).

These results suggest that it is possible that a Fick gimbal strategy may
be used for a larger range of rotations, but do not provide sufficient evidence.
The lack of evidence may be attributed to the reasons mentioned above.

The lack of significant improvement in the thickness for a second order or
gimbal surface rather than a flat plane, combined with the lack of consistency
in the parameters leads to the conclusion that in general a flat plane is the
best surface to use as a constraint on torsion.

The fit for the divided workspace was better than that for the entire
workspace. When considering the second order surfaces, using a divided
workspace gave a significantly better fit for all subjects (t-test at 0.2 signifi-

cance level). This implies that by using local rules for the constraint of arm
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Figure 4.18: An example of a gimbal-
like surface, where the twist is in the
direction of a Fick gimbal (ie the gim-
bal score is negative). The upper left
and lower right corner have positive

torsion, while the other two corners

have negative torsion. (The colours

are an aid for judging the depth and

have no additional meaning.)

orientations rather than a global rule, a better model for constraining the
orientations can be found.

A summary of the thickness of the fit to a second order surface under a
range of conditions can be found for the forearm (Table 4.7) and the upper
arm (Table 4.8).

A comparison was made between the thickness of the plane if only sta-
tionary orientations are considered (i.e. those at the start and end points),
and the thickness of the plane when the orientation at each time step is
considered. These results can be found in Tables 4.7 and 4.8.

For a second order plane, for the forearm, the thickness of the plane for
stationary movements was on average 14.3% less than that for all movements,
while for the upper arm it was 19.0% less for stationary compared to all
movements. These findings are similar to the results found in Admiraal et al.
(2002) (they found a 9.5% improvement for the orientation of the upper arm).
The t-test showed that the difference is significant for 3 of the 5 subjects at
the 0.2 level for the forearm, and for all subjects (at the 0.2 level) for the

upper arm.
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Subject 1 2 3 4 5
Set 1:
All points whole WS 3.40° 3.46° 3.90° 2.97° 7.99°
divided WS 2.43° 2.65° 3.09° 2.61° 5.59°
Stationary  whole WS 2.84° 2.89° 3.82° 2.41° 7.57°
divided WS 1.03° 1.28° 1.97° 1.84° 3.12°
Single step ~ whole WS 2.95°  2.91° 4.20° 2.03° 8.68°
divided WS 1.71° 1.84° 2.35° 1.66° 4.59°
Double step whole WS 3.25°  3.85° 3.52° 3.58° 6.56°
divided WS 2.47° 2.64° 2.73° 2.98° 4.51°
Set 2:
All points whole WS 3.12° 3.71° 3.36° 4.14° 5.53°
divided WS 2.31° 2.88° 2.89° 3.46° 4.37°
Stationary  whole WS 2.49° 3.03° 2.94° 3.59° 4.75°
divided WS 1.24° 1.56° 2.30° 2.47° 2.32°
Single step  whole WS 2.80° 3.30° 3.32° 3.72° 5.33°
divided WS 1.88° 2.13° 2.42° 2.58° 2.73°
Double step whole WS 3.32°  3.64° 3.54° 4.53° 5.59°
divided WS 2.36° 3.02° 2.82° 3.52° 3.81°
Set 3:
All points whole WS 4.30° 4.01° 3.51° 3.70° 4.82°
divided WS 2.90° 3.08° 2.80° 3.20° 3.41°
Stationary  whole WS 3.93° 3.57° 3.43° 3.32° 4.16°
divided WS 1.62° 1.94° 2.16° 2.62° 1.76°
Single step ~ whole WS 3.58° 3.43° 3.12° 3.04° 4.36°
divided WS 2.64° 1.99° 2.40° 2.62° 2.50°
Double step whole WS 3.51° 3.97° 3.61° 3.89° 5.15°
divided WS 2.33° 3.20° 2.85° 3.33° 3.46°
Set 4:
All points whole WS 2.83° 3.80° 3.32° 4.82° 4.75°
divided WS 2.19° 2.98° 2.72° 3.34° 3.92°
Stationary  whole WS 2.18° 3.48° 3.02° 3.49° 3.74°
divided WS 1.06° 2.22° 2.30° 1.94° 2.19°
Single step  whole WS 2.47° 3.20° 2.52° 3.98° 3.98°
divided WS 1.65° 2.13° 1.81° 2.52° 2.79°
Double step whole WS 2.85° 4.18° 3.70° 5.40° 5.21°
divided WS 2.21°  3.22° 2.92° 3.50° 4.17°

The values represent the standard deviation of the distance from

r, and 7,) bins.
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Table 4.7: Summary of thickness of second order surfaces for forearm move-

the surface in the r, component. A comparison is made between the whole

workspace, and the weighted average when divided into 9 equally sized (in



Subject 1 2 3 4 5
Set 1:
All points whole WS 3.60° 1.84° 2.46° 1.66° 5.47°
divided WS 2.80° 1.47° 1.96° 1.31° 3.82°
Stationary  whole WS 2.83° 1.49° 1.89° 1.23° 4.40°
divided WS 1.25° 0.71° 0.95° 0.76° 1.02°
Single step ~ whole WS 2.92° 1.64° 2.13° 1.47° 5.47°
divided WS 2.05° 1.17° 1.55° 0.97° 2.87°
Double step whole WS 3.66° 1.95° 2.61° 1.70° 5.07°
divided WS 2.81° 1.43° 1.97° 1.34° 3.64°
Set 2:
All points whole WS 2.70°  2.23° 2.14° 2.48° 4.54°
divided WS 1.87° 1.82° 1.83° 2.18° 3.27°
Stationary ~ whole WS 2.04° 1.83° 1.67° 2.11° 3.06°
divided WS 0.74° 1.16° 1.35° 1.71° 1.35°
Single step  whole WS 2.03° 2.12° 1.80° 2.20° 4.00°
divided WS 1.32° 1.62° 1.52° 1.95° 2.00°
Double step whole WS 3.01°  2.22° 2.48° 2.57° 4.54°
divided WS 2.00° 1.75° 1.94° 2.01° 2.99°
Set 3:
All points whole WS 3.12° 2.61° 2.27° 2.14° 4.33°
divided WS 2.11° 2.23° 1.86° 1.79° 3.19°
Stationary  whole WS 2.31°  2.24° 1.82° 1.84° 3.14°
divided WS 0.91° 1.45° 1.26° 1.51° 1.19°
Single step ~ whole WS 2.48° 2.30° 1.98° 1.89° 4.42°
divided WS 1.78° 1.66° 1.54° 1.51° 2.77°
Double step whole WS 3.20° 2.61° 2.39° 2.35° 3.73°
divided WS 2.08° 2.17° 1.85° 1.90° 3.08°
Set 4:
All points whole WS 2.61° 2.77° 2.24° 2.20° 4.88°
divided WS 2.00° 2.36° 1.87° 1.75° 3.40°
Stationary  whole WS 2.12° 2.50° 2.02° 1.95° 3.97°
divided WS 1.11° 1.70° 1.48° 1.44° 1.34°
Single step  whole WS 2.14° 2.47° 1.88° 1.95° 5.07°
divided WS 1.45° 1.97° 1.58° 1.42° 2.91°
Double step whole WS 2.65° 2.98° 2.45° 2.43° 3.87°
divided WS 1.97° 2.50° 1.97° 1.88° 2.97°

movements.

(in r, and r,) bins.
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Table 4.8: Summary of thickness of second order surfaces for upper arm
The values represent the standard deviation of the distance
from the surface in the r, component. A comparison is made between the

whole workspace, and the weighted average when divided into 9 equally sized



There was no significant difference in the thickness of the surfaces for
orientations that were part of point to point trajectories compared to those
that were part of double step movements. This can also be seen from the
results in Tables 4.7 and 4.8. In some cases, the single step movements
were better, while in others, the double step movements were better. These
findings are similar to those of Minken et al. (1993), where it was found
that highly curved eye movements produced as a result of the double step
paradigm obeyed Listing’s law equally as well as point to point movements.

The fit to the surfaces of rotation vectors for the upper arm was signifi-
cantly better than for the forearm (by a t-test on the thickness of second-order
surfaces at the 0.2 level). This suggests that upper arm movements are more

constrained than forearm movements.

4.4 Discussion

In the results it has been shown that a surface can be fit to the rotation
vectors for the forearm and upper arm during extended arm movements,
and hence that a form of Donders’ law is valid for such movements. A flat
surface is a reasonable approximation to this surface, similar to results found
for movements of the eye in a head fixed system (Tweed & Vilis, 1990b) and
other studies of the extended arm (Liebermann, 1998). The thickness found
for the surfaces, however, is larger than those found for the eye.

The thickness of the surfaces makes it difficult to differentiate further
between the different models. A slightly better fit is achieved by using a
second order surface, although the second order surfaces found were not
consistent between sets and subjects. A significant improvement in the fit is
also possible by considering the surfaces when the workspace is divided.

The results also seem to suggest that if considered over a larger workspace,
the fit may be better to the rotation vectors reachable using a Fick gimbal
with zero Fick torsional angle (¢ = 0), similar to the findings in Hore et al.

(1992). Experiments over a larger range of orientations would be necessary
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to conclusively test this prediction. Such a system has the property that the
wrist orientation with respect to the horizon, and with respect to the line
of sight, remains constant. The absence of this finding in this experiment
could also be due to the recording equipment or paradigm used, which may
encourage such behaviour.

It was found that stationary orientations have less scatter from the Don-
ders’ surface than the orientations during the movement. In Admiraal et al.
(2002), it is suggested that this may be due to errors in executing the motion
plan because of difficulties in predicting the complex biomechanical proper-
ties of the arm, or because of differing delays from the central nervous system
to different muscles.

In contrast, no significant difference was seen between single and double
step movements. Linear superposition of the two control trajectories (in
rotation vector space) would, in general, produce values of torsion different
to those for a single step movement. As there is no difference seen, this
suggests that superposition does not take place on the torsional component
of the rotation vector, rather it is calculated in some other way. This issue
will be further explored in Chapter 6.

The thicknesses of the surfaces are considerably larger than those found
for eye movements. Examination of the variation in end point rotation vec-
tors also showed that, in general, the torsional component contains more
variation than the other components. These findings suggest that the tor-
sional component is planned to a lesser degree than the other components.

In Soechting et al. (1995) it is claimed that Donders’ law does not hold,
but rather a minimum work strategy is employed. The work involved in
producing torsional rotations is much smaller than that of rotations about
the other axes. It is seen here that the thicknesses of the surfaces for the
upper arm are less than those of the forearm. Rotations of the upper arm
require more energy than the forearm, and hence this property may be a
result of some sort of minimum work strategy.

Additionally, if the other components of the rotation were planned in or-

58



der to minimize work, and the torsion was just a byproduct of the generation
of the other components, larger variation in the torsional component than
the other components would have only a small effect on the minimum work
principle. In this sense, the torsion would be less controlled than the other

variables.
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Chapter 5

Background on models of

motor control

The planning of pointing movements in the brain can be modeled by an
internal model - a set of theoretical computations that predict the motor
commands necessary to perform a given motor event (Sabes, 2000). This
chapter presents different models for the generation of pointing movements
and saccades, examining their feasibility for use with extended arm pointing
movements.

Point to point movements have been found to be repeatable and largely
invariant in task space (Morasso, 1981; Flash & Hogan, 1985; Wolpert et al.,
1995). A similar invariance in rotation vector or quaternion space has been
seen in studies of head fixed eye saccades. The angular velocity of these
movements show relatively little scatter for normal point to point saccades
(Van Opstal, 2001). This repeatability suggests that some sort of model is
used in the brain to generate these movements. A number of models and their

implications for the subsequent generated trajectories will be presented.
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5.1 Double step movements and the super-

position strategy

The double step paradigm (Flash & Henis, 1991) can be used as a technique
for testing different internal models. Models that may give satisfactory pre-
dictions for point to point movements will not necessarily provide accurate
predictions when there is a change of plan mid-flight.

Flash & Henis (1991) found that the trajectory plan of double step move-
ments in a plane could be modeled as the vectorial addition of the original
trajectory plan (from the starting location to the first target) and a second
trajectory plan (for the displacement from the first to the second target).

The trajectory plans that are added consist of bell-shaped velocity pro-
files. Similar velocity profiles were seen in a study of infant reaching move-
ments (Von Hofsten, 1991). Here the movements consisted of a combination
of “action units”, made up of acceleration and deceleration phases, while the
path of each unit is fairly straight. As the infants grew older, the number
of units decreased and they became straighter. This combination of action
units is similar to the superposition of trajectory plans.

The tangential velocity while tracking moving targets can be modeled
as the superposition of trajectory plans with bell-shaped tangential velocity
profiles (Lee et al., 1997). This is based on the concept that a complex tra-
jectory may be formed by the linear superposition of simple sub-movements.

The superposition strategy has also been considered for trajectory mod-
ification with robot manipulators (Gat-Falik & Flash, 1999). The benefit of
this strategy is that it guarantees continuity in end effector / hand position
and the first derivative with respect to time, without requiring knowledge of
the hand position, velocity or acceleration at the time of the switch. The
elementary units can also be planned independently in parallel, a strategy

that can be implemented for use in robotics (Rogozin et al., 2001).
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5.2 Abort-replan model

The abort-replan model (for example, in Hoff (1994)) is an alternative strat-
egy for handling double step movements. It is based on generating a new
trajectory plan after the target location is modified (or alternatively, gen-
erating the trajectory plan continuously as the movement progresses). The
new trajectory plan is chosen such that the velocity and acceleration will be
continuous with the old plan, but to end up at the new target location. To
do this requires information about the current kinematic state. Feedback
from vision and proprioception would be too slow to use, hence this model

requires that efference copies of the current state be available.

5.3 Models for 2D movements in a plane

Flash & Henis (1991) presented a kinematic model for the generation of arm
movements in a horizontal plane. Their model produces trajectories that
minimize an objective function. It is known as the minimum-jerk model,
and its cost function is the square of the magnitude of the jerk (rate of

change of acceleration):

L)) e

C is the cost, z and y are the time-varying hand positions, ¢, is the time at
the start of the movement, and ¢; at the end of the movement.

By using the Euler-Lagrange equation, the unique solution for a move-
ment from (zg, yo) to (2, ys) beginning at time ¢, and finishing at ¢; is given
by (Flash & Hogan, 1985):

z(t) = o+ (v —x0) (1073 — 157 + 67°) t —to

, where 7 = i
y(t) = yo+ (yr — vo) (107> — 157 + 677) tr —to

(5.2)

The minimum-jerk model produces straight-line trajectories between the ini-

tial and final point, with a bell shaped velocity profile. The velocity can be

62



expressed as:

i(t) = 3092 (72 =27 4+ 1)

y(t) = 30% (7‘2 — 9273 + 7_4) (53)

where A, = xy — 29 and A, = y; — yo are the amplitude in the = and y
directions and D = ty — ¢ is the duration.

A simple model can be built to simulate such trajectories. From the
current and desired position, the desired displacement vector d can be cal-

culated:

Ay
A

d= [xf I (5.4)

Yr — Yo

y

The displacement vector gives the amplitude of the movement. The duration
of the movement is assumed here to be preset. A velocity profile for a unit

amplitude, o(t), can be expressed as:

o(t) = 3_12 (72 — 20 4 1) (5.5)

The integral of (5.5) over the relevant time (0 < 7 < 1) will be 1. Thus
the velocity profile for an arbitrary amplitude [Ax Ay]l will be d - a(t).
The velocity can then be integrated to give the position (with the movement
beginning at the initial position). This model is illustrated in Figure 5.1.
The construction of this model to include the generation of the movement
by first producing the velocity profile was selected so it will be similar to
models for saccade generation. This model will produce trajectories that
satisfy equation (5.3).

A superposition scheme could be implemented with this model to handle
trajectory modification. In parallel, the model would need to generate a tra-
jectory from the initial to the first target, and the displacement from the first
target to the second target - the output would be the vectorial summation
(starting the second movement at the appropriate time) of the two generated
trajectories. Due to the linear, commutative nature of the operations, the

superposition could also be performed on the velocity (&,7) and the same
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desired Vector pattern (#(2),y(t)) Neural Trajectory
(f,yr) error generator = d - o(t) | Integrator (2(t),y(t))

2y

Figure 5.1: A 2D position based model. The desired displacement is calcu-
lated from the desired and current position by vector subtraction. The pat-
tern generator then generates a smooth, bell shaped, velocity profile, which

is integrated to produce the desired position.

result would be produced. In the generalization to a 3D rotational system,

such assumptions cannot be made.

5.4 Models for saccade generation in the eye

A number of models have been presented for the generation of saccades in
the oculomotor system (for example Tweed & Vilis, 1987; Van Opstal, 2001).

An analogous model to the one presented for 2D hand motions can be used
for modeling point to point eye saccades. The rotation vector displacement
d, can be calculated using vector subtraction. Note that this will not give the
rotation from the initial orientation to the final orientation. The coordinate
velocity (7) can then be calculated as 7+ = E - o(t), then integrated to give
the current rotation vector. This model is shown in Figure 5.2.

This model will generate smooth trajectories, with single axis rotations.
A single axis rotation is one where the entire rotation is about the same
axis. This can be seen easily in angular velocity space, where a single axis
rotation corresponds to a straight line that passes through the origin in an-
gular velocity space (because the direction of the angular velocity vector is
the axis of rotation). This model has a coordinate velocity of 7 = d,o(t),

and the rotation vector during the movement will be 7 = 7, + d,o(t)t. Using
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equation (2.28), the angular velocity can be expressed as:

L+ (Fo+ doo(t)t) - (7 + doo(t)1)
The angular velocity will hence always be in the same direction, but with the
magnitude varying as a function of time. Hence, it is a single axis rotation.
The models presented for eye saccades have, however, generally been
feedback models. Tweed & Vilis (1987) presented such a model, based on
feeding back the current eye orientation. This model, adapted for rotation
vectors, is presented in Figure 5.3.
The displacement that drives the feedback model is the rotation vector

difference between the current and desired rotation:
dy =7por ! (5.7)

This is different from the displacement vector d: = 7y —T7p used in the previous
model. Here the displacement is equivalent to the rotation that would take
initial .

7 r(t)

desired | ROtion |7 F Neural
—= Vector [z _=>|d, o(t)

7‘.’
f Error

t)

7
@ Integrator @ Traj.

Figure 5.2: A 3D rotation vector model. The coordinate velocity I is de-

termined by d - o(t). A 3 dimensional “Neural Integrator” (Tweed & Vilis,

1987) gives the current orientation using feedback of the current orientation

7(t).
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7| Vector o element -
f Differencel "/ ° i @ transform @ Integrator| | Tra.
current ( )
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Figure 5.3: A 3D rotation vector model, based on Tweed & Vilis (1987). The
current rotation vector displacement d; is found (defined here as the rotation
from the current orientation 7; to the desired orientation 7y) and passed
through a non-linear element to give the angular velocity. A 3 dimensional
“Neural Integrator”, using feedback of the current orientation, outputs the
trajectory plan, with the current orientation used to produce the updated

error.

the current orientation to the desired orientation. The model will continue
to work until the current orientation is the same as the desired orientation,
when the rotation vector difference will be zero and it will stop.

In order to move towards the target, the axis of rotation needs to be in
the direction of the displacement d,. This gives the direction of the angular
velocity. The magnitude is determined by a non-linear element, sometimes
referred to as a pulse generator. For eye saccades, there is evidence that
this role is played by medium burst neurons (Van Gisbergen et al., 1981),
which have a discharge rate relative to the saccade velocity. These bursts
can be modeled using exponentials. A simple approximation can be made
using (Tweed, 1997):
adyg

—_— 5.8

0=

where a and b are constants, and |d,| is the magnitude of the vector d,.
Tweed (1997) notes that a more realistic model would use some combination

of jerk, acceleration, velocity and position in determining the magnitude of
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the angular velocity.

The implementation of the integrator can be performed using an inter-
mediate step. The coordinate velocity can be calculated from the angular
velocity (Van Opstal, 2001):

F=2(B+3 %7+ (& 77 (5.9)

The coordinate velocity can then be integrated separately for each component
to give the trajectory in rotation vectors. Trajectories for point to point
movements produced by this model will also be single axis rotations because
the axis of rotation will be constant. The magnitude of the velocity will be

determined by the form of the non-linear element.

5.5 Incorporation of Listing’s law

The two previous models can be easily adapted to incorporate Listing’s law.
The input to the model is the desired gaze or pointing direction, which can be
expressed as a unit vector e, = [x y z] I. When a Listing’s law constraint is
applied (i.e. that r, = 0), then a pointing direction corresponds to a unique
rotation vector. By solving equation (2.11) with this constraint, it is possible

to find the unique rotation vector for a given pointing direction:

Ty (-1 ) 0

-1+
T e | P (5.10)
Tz )

An additional box to perform this transformation would then be added
to the two models, but otherwise they would perform as before. A similar
approach is used in Tweed & Vilis (1990b), where the desired gaze vector
is transformed to desired eye orientation quaternion. Hence for a saccade
generated using this movement, the start of the movement is assumed to be
in Listing’s plane, and the end of the movement is specified to be in Listing’s

plane. Although only these two positions are constrained to be in Listing’s
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plane, the intermediate positions will also be in Listing’s plane. This is
because a single axis rotation between two orientations that lie in Listing’s
plane has a straight line path in rotation vector space (Van Opstal, 2001),

and so can be represented by the following equation
(t) =71+ o(t) - (7% — 71) (5.11)

where o(t) has an integral of 1 over the time of the movement (for exam-
ple, equation (5.5) could be used). This does not generally hold when the
constraint on the rotation vectors is a non-flat surface.

It should be noted that although the rotation vectors throughout the
movement will lie in Listing’s plane, the angular velocity axis for movements
that do not begin or end at the primary position will have a tilt, i.e. they will
not lie in Listing’s plane. To ensure the rotation vectors remain in Listing’s
plane, the angular velocity axis is required to tilt out of Listing’s plane by
half the orthogonal deviation of gaze from the primary position. This is
known as the half-angle rule (Crawford, 1998).

5.6 Trajectory modification with rotation vec-

tor models

While for the position based models, superposition could be performed at the
position or velocity level, an analogous statement does not hold for rotation
vectors. If a similar strategy of superposition is to be used for rotations, it
can be performed at the level of angular velocity (&), coordinate velocity (7)

—

or rotation vector (7)

Superposition of angular velocity (&)

A test of superposition at the level of angular velocity can be performed with
the model in Figure 5.3. First, the method of composing angular velocity

needs to be considered.
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The composition of angular velocity vectors is defined here as the angular
velocity Ws(t) such that it is equivalent to the angular velocity of the following
rotation at each time step: first applying the rotation represented by & (%),

and after time 7, also afterwards applying the rotation represented by s (t —
).

For simplicity, the calculations will be performed using quaternions (see
Appendix A) and later converted to rotation vectors. Consider a vector
so that is rotated (at each time step) by the rotation represented by the
quaternion ¢;(¢). After a time 7, after the rotation represented by ¢(t), the
rotation represented by ¢o(t') is also applied. In the time scale of ¢;(¢), the
second rotation will be defined by ¢2(¢ — 7), where the rotation for ¢s(t) for
where ¢ < 0 (ie no rotation) will be defined as the identity quaternion, that

is, a rotation of zero radians about an arbitrary axis:
() =1+ (0] ,t<0 (5.12)

and 50 ¢, '(t) = qo(t) for t < 0.
The new position of the vector will be s(t), defined by:

s(t) = q(t — T)q(t)s0q; ' (t)gy ' (t — 7) (5.13)

Taking the time velocity gives

5(t) = Go(t = T)qr(t)s0qy ' ()gy (t = 7) + gt — T)%(ql(t)Soqll(t)qgl(t ~ 7))
= Gt — 7)1 (t)soqr ' (H)gy (= 7) + qa(t — 7)1 (t)s0qy ' (£)g5 ' (t —7)
+a(t = 7)ar(t)so—(a (g, (¢ = 7))
= 4ot — T)a1 (t)s0qr " (H)gs ' (t —7) + ga(t — T)dr (H)s0q7 (t) g5 ' (¢ —7)
+ @ (t — ) () sody  ()gy ' (t—7) + g2t — T)qu (t)s0q, ' (£)dy ' (t — 7)
= (Gt = T)ar (t) + ga(t = 7)1 (1)) (5041 (B ' (t — 7))
+ (@2t = T)ai(t)s0) (47 (az ' (t = 7) + a7 (£)dy ' (t = 7))
(5.14)
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Then using (2.18),(2.19) and (2.20):
5(t) = (Gt — T)ar (t) — go(t = T)qu (H)di (1)qn (1)) (s0qy (£)g5 ' (t — 7))
+ (g2 (t = T)qa () s0) (—ar ' (D@ (g az ' (= 7) + ¢ (D)5 ' (t — 7))
= (@t —7) — @2t — T)ql(t)dfl(t))(ql(t)st)qfl(t)qil(t — 7))
+ (ot = 7)qn (t)soar (1)) (=1 (a7 a5 ' (¢ —7) + 65 ' (t — 7))
= (=gt = 7)dy ' (t = T)go(t —7) — qa(t —7)ai(t)dy ' (t)
¢y ' (t = T)aa(t — 7)) (@ (D)s0q; ' (H)ay ' (t — 7))
+ (ot = ) (t)s0qr (1)) (=2 (t — T)qa(t — T)da (t)g; "
g (t—7)—aq ' (t = 7)ot — )z (t — 7))
(5.15)

Substituting back in (5.13):

$(t) = (—q2(t =7 ' (t = 7) — qa(t = T)qu(t)g; " (t)gy ' (t — 7))s(t)
+5(t) (gt = 7)q1(t)ar a5 (t = 7) — ot — T)gz ' (t — 7))
= (@t = T)az ' (t = 7) + @t = T)aa (H)ar " (H)ag ' (2 — 7))s(?)
—s(0)(Ga(t = 7)g ' (t = 7) + @t = 7)1 (H)g; g5 (t = 7))

and from (2.22)

=2(¢a(t = 7)gy ' (t = 7) + ot = T)(t)ar  (H)az ' (£ — 7)) < s(1)
(5.16)

Hence by (2.24), the angular velocity &3 can be expressed as

G3(t) = 2(G2(t = 7)gy ' (t = 7) + @t = )1 (ay " (H)gy " (E— 7)) (5.17)
Using equation (2.25):

G3(t) = Dot — 7) + qu(t — T)D1q5 ' (t — 7) (5.18)
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Now expanding the expression using (A.2):

ga(t — 7)o (t) 0 g3 (t — 7)
=[{~@t—7) Gt} + guolt = T)& (1) + Bt — 7) x Gi(t)] o g3 ' (t = 7)
= {0 (t = T)(@(t = 7) - D1(t) = (qao(t = T)GL(t) + Rt — 7) X (1) - & ' (t — 7))
Bt —7) &1 (1))dy (t = 7T) + a3 (t = 7)(gao(t — 7)1 () + Gt — 7) X & (1))
t)+ Gt —7)x Gi () x &t — 1)
—7)-di(t) — @t —7) - Gi(0)] + (R —7) x Gi(t) - &t —7)}
)@ (t = T) + @5 (t = T)&1 (1) + goo(t — T)(R(t — 7) x Gi(t))
X @t — 7)) = (@ —7) x di(t) x &t — 7))
)+ @t — )} + d5o(t = T)D1(t) + 2g00(t = T)(@B(t = 7) X wi(t))
Lt —7) = @t —7) x di(t) X &t —7)

substituting using (A.4), and noting that (@ x b) - @ =0

= qay(t — T)(@1(t) + 2(7(t — 7) x G1(t)) + (Fa(t — 7) - &1 (2))Ta(t — 7)
—To(t — 1) X D1(t) X Tt — 7))
(5.19)

In the above calculations, because it is assumed that ¢y (¢—7) is a unit quater-
nion, then gy = ¢y and @ (t—7) = —@, '(t—7). The scalar part disappeared
as expected, because it is an angular velocity. The final expression can hence
be written as:

G1(t) + 2(7a(t — 1) x i (t)) + (Fo(t — 7) - 1 (8))72(t — 7)

J3(t) = wa(t — 7) +

(= T) X i) xRt —7)
1L+ 75(t—7)-75(t —7)

(5.20)

Superposition of angular velocity could be performed using (5.20) at the
point marked by 1 in Figure 5.3. Superposition at this point is problematic,
because the tilt in the angular velocity necessary to remain in Listing’s plane

is a function of the current orientation. Superposition of the tilts in general
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will not give the required tilt for the double step movement. Minken et al.
(1993) explained that every combination of angular velocity commands will
fail to generate the required tilting under all circumstances. This is because
the current orientation is also needed. An example of performing superposi-
tion using (5.20) is shown in Figure 5.4. Significant violations of Listing’s law
can be seen in such a case. Minken et al. (1993) made a number of sugges-
tions to get around this problem. One suggestion was to use the coordinate

velocity 7 rather than the angular velocity &.

Superposition of coordinate velocity

Superposition of coordinate velocity could take place at the point marked 2
in Figure 5.2 or at the point marked 2 in Figure 5.3. If the superposition was
performed using the feedback model (Figure 5.3), then the rotation vectors
from the original (control) trajectories would need to be used. This would
involve using an efference copy of the predicted rotation vector for a point
to point movement rather than feeding back the actual rotation vector.

Superposition of coordinate velocity is much simpler - regular vector ad-
dition can be used. The results of superposition of coordinate velocity on
the same data sets as before can also be seen in Figure 5.4.

When superposition is performed on coordinate velocity, Listing’s law is
not violated during double step trajectories. The torsional component of the
coordinate velocity 7, is always zero because Listing’s law means that r,(t)
is always zero, and hence the summation of coordinate velocities will also
have a torsional component of zero. This in turn means that the torsional
component of the rotation vector r,(t) will remain unchanged, that is, it will
always be zero. This holds only for the special case of Listing’s law where
7, = 0 throughout the workspace.

It should be noted that this model and the angular velocity based model
will give similar trajectories for point to point movements, where both follow

Listing’s law. The difference can only be seen in the double step case.
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Figure 5.4: An example of superposition of different quantities. The first
and third rows show the rotation vectors and angular velocity in compo-
nents plotted against time. The second and fourth rows show the rotation
vectors and angular velocity from the top, back and side views. The blue
lines indicate superposition of angular velocity (w). It can be seen that non-
zero torsion is introduced (the blue line in the upper-left graph has non-zero
values), indicating violations of Listing’s law due to the incorrect tilt. In con-
trast, superposition of coordinate velocity (red) and rotation vectors (green)
(the red and green partially obscure each other) give equivalent results - zero
torsion is maintained throughout. For superposition of these quantities, the
angular velocity axis has the appropriate tilt introduced as a result of the

torsion being zero.

Superposition of rotation vectors

Superposition could also take place after the entire trajectory has been gener-
ated, at the level of rotation vectors (marked by 3 in Figure 5.2 or Figure 5.3).

This could take place using rotation vector composition, defined in Equation
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(2.8).
Initially, just the first rotation 7 (¢) takes place. When the second rotation

75(t — 7) begins (at time 7), then they are combined according to:
F(t) = 7t — 1) o7, Fo 7 (1) (5.21)

where 7(t) defines the rotation vector as a function of time for rotating
from 7, to 7, and 7,(t) is the rotation vector as a function of time for a
movement from 7, to 7.. This defines the result of rotating first by the
rotation represented by 7 (), followed by that represented by 75(t — 7). The
rotation by 7 ! is necessary, because () implicitly includes a rotation to 7.
Although both rotations introduce zero torsion, the superposition of them
does not generally have zero torsion - this is due to the cross product in (2.8).
An example of superposition of rotation vectors with the same initial data
is shown in Figure 5.4, although the small torsional component is difficult
to see in the diagram. At the end of the movement, unlike with the angular
velocity, the torsion returns to zero. This is because Equation (5.21) at the
end of the movement (¢;) will equal:

Fty) =7, 0, om, (5.22)

=7,

Hence the orientation at the end of the movement will be 7., which is in
Listing’s plane. So while the torsion during the movement does not obey
Listing’s law during superposition of rotation vectors, it does at the start

and end of the movement.

5.7 Incorporation of Donders’ law for non-

flat surfaces

In Chapter 4, it was suggested that for extended arm pointing movements,
the rotation vectors describing the orientations throughout the movement

may be constrained to a curved rather than a flat surface.
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Figure 5.5: A 3D coordinate velocity model. In this model, the Donders’
law operator is applied after calculation of the required 2D error for each
time step. Unlike in the Listing’s law case, the operator is dependent on the

current position.

The models presented so far will fail to produce trajectories that satisfy
Donders’ law for constraints other than Listing’s law. This is because they
are based on setting the initial and final points to satisfy Donders’ law, and
assuming that the intermediate points will also satisfy it. While this is true
for Listing’s law, it is not generally true for Donders’ law.

An alternative model is presented where the Donders’ law constraint is
shifted so that it is applied throughout the movement. This model is an
adaption of the model in Figure 5.2. The model in Figure 5.3 could also be
modified for this condition, but would be more complicated, and the model
presented here will be suitable to test superposition.

This model uses a two dimensional displacement (d») rather than a three
dimensional displacement. The two dimensional rotation vector desired dis-

placement is defined as:

dy= | " (5.23)
Tr. — To.

The pattern generator generates the current displacement, d;a(t), so that at
time ¢ it needs to move cl}a(t) towards the target. The necessary coordinate
velocity is then generated to ensure adherence to Donders’ law, using the

current orientation. A diagram of this model is shown in Figure 5.5.
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While this model produces single step trajectories that satisfy Donders’
law, an additional problem is introduced. The Donders’ operator is depen-
dent on the current position, hence the superposition of two quantities, gen-
erated at different orientations to the current position, will not generally
result in the correct torsion being specified.

Superposition of angular velocity and rotation vectors were shown to be
problematic even with a flat plane. Superposition of coordinate velocity also
produces the wrong answer when considering this more general case.

For example, if a gimbal-like system is used for Donders’ law (see Chapter

3), where the constraint on torsion is
Ty = 8(ryr2) (5.24)

then this will lead to a constraint on coordinate velocity of (by taking the

time derivative):
To = S(TFyry + 7y7T2). (5.25)

Hence performing superposition of the torsional components of two con-

trol coordinate velocities 7, and 7, will give:

Tay + Tay = S(FyyTay 4 TypTay + Ty Ty + TyTy)
= Ty — S(Tyy o + TyoTay + TyoTay + Ty Tay) (5.26)
# Ty
This will only give the necessary coordinate velocity torsional component
(72,) if s = 0 - thisis if a Listing’s plane is used as the Donders’ law constraint.
However, the bracketed terms in (5.26) are close to zero if the overlap
(the time that both control trajectories are operating) is not large. With a
small overlap, the torsion generated is very close to that required to satisfy
the Fick gimbal constraint. However, with a large overlap, the velocities will
be significant during the overlap and hence large variations will be seen. In
both situations though, the final torsion will be as required.
An alternate strategy would be to perform superposition on only the 7,

and 7, components of the movements. Then the 7, component would be set
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using the appropriate Donders’ law constraint. This would clearly guarantee
that Donders’ law is satisfied. The movement would be effectively planned
in 2 dimensions, with the torsional constraint only applied at the final stage.

For example, for a Fick rule, a form of superposition could be defined for
coordinate velocity such that it would always produce the correct torsion by

rearranging equation 5.26:

7:‘13 = 7:‘11 + 7:‘12 + S(fyl/rzz + fﬁyzrn + /ry27:lzl + Ty17;2’2) (527)

However, performing the superposition would then require the rotation
vectors of both control trajectories as well as their coordinate velocities.

Performing superposition in terms of 7, and 7, does not guarantee that
the correct final target location is reached. The position of the end effector
in space is a function of all three components of the rotation vector, not just
the torsional component. This is because the 7, component is related to a
rotation about a space fixed axis (pointing straight ahead), rather than an
arm fixed axis. Hence the value of the r, component also affects the position

of the end effector and not just the angle of rotation about its own axis.

5.8 Models in Fick coordinates

The only solution that seems to remain is to plan the motion in two dimen-
sions, and then constrain the torsion. A representation is required that will
ensure that the primary goal, the pointing direction of the end effector, will
be achieved. Fick coordinates can be used for this purpose - the #p and
¢ angles (described in Figure 2.2) specify the pointing direction of the end
effector, while the rotation about its own axis is specified only by the ¥p
angle. A model can be described where the trajectory is first generated in

terms of #z and ¢, hence the 2D displacement vector dz can be defined as

- 0f—90
dp = 2.28
=] 29
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Figure 5.6: Two-dimensional Fick angles model. The error from the ini-
tial pointing direction to the desired pointing direction is calculated in two-
dimensional Fick coordinates, then passed to the pattern generator. This
occurs instantaneously (shown by the dotted lines). The pattern generator
produces a trajectory plan in two dimensional Fick coordinates as a function
of time, then at the last stage the torsion is specified to satisfy Donders’ law
with the output being the appropriate rotation vector. The solid lines show

the parts of the model that operate throughout the movement.

This leads to a model where the trajectory is first generated in 2D in
terms of 6 and ¢r. Then the necessary rotation vector to satisfy Donders’
law at each point is generated. This model is shown in Figure 5.6.

Superposition using such a model could be performed by adding the tra-
jectory plans generated in 2D Fick coordinates before the Donders’ law con-
straint is applied. This superposition will ensure that the pointing direction
is correct, while the torsion will be fixed after the superposition to satisfy
Donders’ law. This is shown in Figure 5.7.

Note that superposition of 3-dimensional Fick coordinates (0p, ¢r, ¥r)
would fail in general, because the Donders’ law constraints are dependent
on the position. The exception to this rule would be when ¢ is exactly
zero - ie if the “Fick rule” were exactly followed then superposition could be
performed in Fick coordinates (because ¢¥r would always be zero). This is
analogous to superposition with coordinate velocity with a Listing’s law rule.

A variation of this model could be constructed where feedback of two

dimensional Fick coordinates is used. The Donders’ law constraint would
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Figure 5.7: Two-dimensional Fick angles model with superposition. This
is an extension of the model shown in Figure 5.6. At the time when the
movement deviates from the initial plan (after the target has jumped), the
error from the first target to the second target will be calculated. The events
occurring at this time are shown with the dashed lines. A trajectory plan in
2D Fick coordinates from the first target to the second target will then be
generated, shown by the dash-dotted line. This is added to the trajectory
plan of the first movement and only at the last stage is the Donders’ law
constraint applied. The solid lines show the parts of the model that operate

throughout the entire movement.

still need to be applied as the last step as with the superposition model.
This alternative still ensures that Donders’ law is applied throughout the

movement.

5.9 Three-dimensional “Velocity box” model

While the previous models constrained the orientation in order to apply
Donders’ law, it is possible to achieve adherence to Donders’ law through
velocity constraints (Ceylan et al., 2000).

The input to such a model is the desired two-dimensional Fick angle dis-
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Figure 5.8: A 3D “Velocity box” feedback model. The model takes the de-
sired 2D Fick angle displacement as the input. Throughout the movement,
the current displacement (initially 0), is compared with the desired displace-
ment, generating the error (5.29). A coordinate velocity is generated in the
velocity box that will reduce the error and satisfy certain velocity constraints
(for example, to satisfy Listing’s law), which is then integrated to give the

rotation vector trajectory.

placement as specified in Equation (5.28). The use of the desired displace-
ment as the input rather than the desired orientation is based on findings that
the superior colliculus, which is believed to generate the motor commands,
encodes the displacement as the input for trajectory generation (Tweed &
Vilis, 1990b). This model is shown in Figure 5.8.

Feedback of the current coordinate velocity is used to update the current
displacement. The current displacement is compared to the desired displace-

ment, and the difference is the 2D error signal (E), defined to be:

The direction of the coordinate velocity will be set to reduce the error, while
under certain velocity constraints, as suggested by Ceylan et al. (2000).
The magnitude of the coordinate velocity will be generated in a similar

way to the model presented in Figure 5.3. This will be integrated to give the
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Figure 5.9: An example of superposition using the “Velocity box” feedback
model, with a Fick gimbal with zero torsion. The first and third rows show
the time development of the rotation vectors and the angular velocity vectors,
while the second and fourth row show them from top, back and side views.
The trajectories produced by the model (blue) have values of torsion that

match the values required by Donders’ law (indicated by the dotted red line).

rotation vector which is required to perform the movement.

The velocity box model can incorporate constraints for Donders’ law. For
example, to constrain orientations to a Fick gimbal with zero Fick torsional
angle, the angular velocity vector must lie in a place whose normal vector is
the current vector position rotated into the horizontal plane (Ceylan et al.,
2000). A simulation of this model for a double step case can be seen in
Figure 5.9.

This model will fit the required values of torsion throughout the movement
as predicted by the Fick gimbal rule. This is because the velocity constraints
are applied after the superposition has taken place. The use of velocity

constraints rather than orientation constraints is advantageous because it
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I constraints such as “minimum rotation” to also be

allows nonholonomic
implemented (Ceylan et al., 2000).

The conversion from Fick coordinates to coordinate velocity will be ex-
plained in more detail in Chapter 6. Implementation of the velocity box for
more general situations can also be performed. The difficulties in doing this
in angular velocity space are explained in Appendix B.

Constraints can be specified more simply in terms of coordinate velocity
rather than angular velocity. For example, for the Fick gimbal rule, first take

the time derivative of (3.7):

T.'l = S(T"gT':; + 7'27"3) (5 30)
= T.'l — 87'37.'2 — 87'27"3 =0 .

Then the normal vector to the plane of coordinate velocity vectors will be

1 —sry —sry ,. For Listing’s law, this simply becomes [1 0 O], which
is no longer dependent on the position (because we are now in coordinate
velocity space rather than angular velocity space). The coordinate velocity
necessary to adhere to any gimbal score can now be easily calculated. A
similar procedure can be performed with a more general second order surface.
Constraints that need to be in terms of angular velocity (such as minimum
rotation, defined as N = f) can be easily converted to coordinate velocity

using (5.9).

5.10 Conclusions

Eye saccades and extended arm movements that observe a flat Listing’s law
constraint can be modeled by a number of models for simple point to point
trajectories. This is because Listing’s law holds during a single axis rotation
between two points in Listing’s plane. Two classes of models have been con-

sidered - models where the entire movement is planned from the beginning,

' A nonholonomic constraint on velocity is one that cannot be integrated to give a

constraint on orientation.
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and feedback models where the current orientation (or an efference copy of it)
is compared to the desired orientation and the error between them reduced
throughout the movement.

During double step movements, the situation is more complex as in gen-
eral these movements will not be single axis rotations.

Superposition of the coordinate velocity (?) will produce double step
movements that satisfy Listing’s law due to the constant zero torsional com-
ponent (7, = 0), while superposition of angular velocity & will fail to produce
trajectories that satisfy Listing’s law. Superposition of the rotation vectors
7 will not produce trajectories that satisfy Listing’s law, although at the end
points the correct torsional values will be produced, and during the move-
ment, the torsion will be close to that dictated by Listing’s law.

When the surface for constraining the rotation vectors is not flat, the
situation is more complicated than for the flat Listing’s plane. Even for
point to point movements, the constraint on torsion cannot just be set at the
beginning and the end of the movement, but must be constrained throughout
the movement.

A solution to this problem is to perform superposition in two dimensions,
using, for example, the 0 and ¢ angles from the Fick angle representation.
Superposition in these coordinates can be performed, with the torsional com-
ponent constrained after superposition has taken place.

An alternate method for constraining orientation is to constrain the ve-
locity. Donders’ law constraints can be expressed in terms of velocity con-
straints, as well as nonholonomic constraints that cannot be expressed only
in terms of orientation. Again the constraints must be placed in what is es-
sentially the last step to ensure that the orientations produced by this model
can satisfy the various Donders’ law constraints.

There are two fundamental questions that remain regarding the models
used for the generation of extended arm movements. Is the fundamental
mechanism used for generating arm movements a feedback system or based

on superposition at some level? Secondly, are the constraints needed for
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Donders’ law applied at the level of orientation or velocity? While an analysis
of double step movements may shed light on the first question, analysis of
the produced movements may be insufficient to differentiate between the two

methods for constraining torsion.
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Chapter 6

Models of motion planning for
extended arm pointing

movements

6.1 Introduction

This chapter describes an experiment designed to test the predictive powers
of models for describing extended arm movements. As background, the form
of trajectories in position and orientation space of single step and double
step movements were examined. Then the predictions of several models
for describing double step movements were compared. A comparison was
made between a superposition and an abort-replan model, between the use
of different Donders’ law constraints, and between models that operate in

orientation space compared to coordinate velocity space.

6.2 Methods

The experimental setup is the same as described in Chapter 4.
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Figure 6.1: A measure of curvature from Smit & Van Gisbergen (1990), de-
fined as C'= £. A negative sign indicates the deviation (in the y-z plane) was

in the counterclockwise direction, a positive sign in the clockwise direction.

6.2.1 Techniques of analysis

First, the unperturbed (single step) trajectories were analyzed. The shapes
of the trajectories were considered in both task space, and in rotation vec-
tor space. The curvature of the saccades was measured using the measure
described in Smit & Van Gisbergen (1990):

C=P/R (6.1)

where R is the amplitude of the straight line connecting the start and the
end of the movement, P is the largest perpendicular deviation from this line,
and C'is the curvature (see Figure 6.1). The invariance of the velocity and
angular velocity was compared, using principal components analysis (PCA)
for functions, based on Ramsay & Silverman (1997) using the accompanying
Matlab software (Ramsay, 2001). Principal components analysis for func-
tions identifies the strongest modes of variation in the variables by finding a
weight function that maximizes a measure of this variation. Each principal
component is orthogonal to all other components so that each component
shows something new, and has a score to indicate how much of the variation
it accounts for.

Velocity and angular velocity are analyzed rather than position or orienta-
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tion because they ignore shifts between the starting positions of movements.
The variations in the velocity and angular velocity within and between sub-
jects were considered.

Initially, the trajectories of the double step movements were considered
in two dimensions in Fick notation, using 6 and ¢p. This uniquely defines
the pointing direction of the arm, but not the torsion. The following analysis
was performed simultaneously in the 67 and ¢r components on each double
step movement.

A superposition scheme similar to that in Flash & Henis (1991) was used.

1. A point-to-point trajectory was selected from the control movements,
that after being appropriately time-scaled to coincide with the trajec-
tory being tested, is the closest (in terms of mean distance) during the
first tenth of the duration of the movement. The selection of the closest
control movement was necessary because of significant variation in the
starting positions of the movements. This trajectory was called the

first control movement (6, (t)).

2. The first significant deviation in velocity profiles between the first con-

trol movement and the test movement was found.

3. The second control movement was found by scaling in time and space
the mean of single step movements from the first target to the second
target so that it began at the time the first control movement ended at
the location of the end of the first control movement, and finished at
the time of the end point of the movement at the location of the end
point of the double step movement. This was called the second control

movement (6y(t)).

4. From the time of the first significant deviation, the trajectory produced
by the superposition model was defined as the addition of the first

control movement, and the difference of the second control movement
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from its starting position. i.e.

e

01(t) 0<t<t
0.(t) +0,(t—1t)—0y t;<t<t
o(t) = | 1) +02(t—t1) =0, 1 <t <1 62)
O o <t <t
(Ot — 1) to <t <t3,1 <t<13

where 6(t) is the Fick angle at time ¢, 6, is the Fick angle at the end
of the first control movement, ¢, is the time at the first significant
deviation between the first control movement and the test movement,
t5 is the time at the end of the first control movement, t5 is the time at
the end of movement and ¢ is the time such that 0 < ¢ < t3 throughout

the movement.

Note that if there is no overlap (i.e. the first control movement ends

before ¢;) then the Fick angle remains at 6, from ¢, until ¢;.

. As an alternative scheme, the abort-replan strategy will be tested,
based on the techniques presented in Henis (1991). A 5th order poly-
nomial will be fitted such that the Fick angle, velocity and acceleration
at the start of the movement are equal to those of the trajectory being
tested at the time of the first significant deviation. The angle at the
end of the predicted movement needs to be equal to the angle at the
end of the movement being tested, and the velocity and acceleration
are assumed to be zero at the end of the movement. The unique 5th

order polynomial that satisfies these constraints can be expressed as

N t—14\"
0,.(t) =160, —60; —30; — =0
() ( ! ‘ 2d> (ts—h)

4
+ (—1590 + 150, + 804 + géd> ( b=t >

t3 — 11

. 3. t—1\°
100, — 106, — 66, — —@
+( ! ! 2d> (ts—h)
1. (t—t;\> . [t—t
—f 0 0
2 d(tg—h) * d(tg—t1>+ !
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where 6, ,.(t) is the predicted Fick angle of the abort-replan model
(valid for ¢; <t < t3), 6. is the Fick angle at the end of the trajectory
(time ¢3), 04 is the Fick angle at the time of the first significant deviation
between the first control and the test movement (¢;), and 0 and
represent the first and second derivatives with respect to time. The
entire predicted movement can be expressed as:

hi(t) 0<t<t

(1) = (6.4)
Bur(t) 1 <t<ts

The two trajectories in terms of f and ¢ were compared to the exper-
imental double step trajectories. The error is defined as the distance
between the prediction of the model and experimental data summed
over the sample points, divided by the distance of the experimental

data from the start of the movement summed over the sample points:

EF _ Zz \/(emz B Hei)Q + (Qbmz B ¢ei)2
Zi \/(eei - 961)2 + (¢€i - ¢61)2

where 6,,, and 0., are the relevant Fick coordinates at time ¢ for the

(6.5)

model and experimental data respectively, where ¢ = 1 refers to the
time at the start of the movement. The sum is performed over the

time points where the movement is sampled.

. The models were also be extended to 3D rotation vector space. To do
this, the rotation vectors were generated from the Fick angles, which
can be performed using equation (2.13). However, this equation re-
quires the Fick torsional angle ¢, which is unknown. A constraint
can be placed on the torsion using Donders’ law. Equation (2.13) pro-
vides three equations, while the Donders’ law constraint provides a
fourth. A second order surface, where the constraint is equation (3.3),
and a Listing’s law constraint (r, = 0) were tested. The constants
generated in fitting the surfaces in Chapter 4 were used for the second

order surface.
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This gives four unknowns, r,, r,, r, and ¥ r, and four equations. Note
that the r, and r, values for a given pointing direction are not unique. It
is not clear if there is an analytic solution to find these variables - hence
the solution was found numerically, using the Levenberg-Marquardt
method (Jacobs, 1977). The predicted rotation vectors will be com-
pared to those from the experimental data, using a similar error mea-

sure to before:

B = Zz \/(Twmi - Trei)2 + (Tymi B Tyei)2 + (szi - TZei)z

’ Zz \/(Trei - Tre1)2 + (Tyei - Tyel)Q + (Tzei - TZel)Q

where r, . and r,_ are the rotation vector component r, of the model

(6.6)

and the experimental data at time .
A similar algorithm will be followed to test the “velocity box” model.
1. The time derivative of the Fick angles will be calculated.

2. The conversion to coordinate velocity vectors is achieved using Equa-
tion (2.15). An additional equation is specified by the constraint on
velocity, as explained in Chapter 5. In this case, the constraint is the

time derivative of the second order surface (3.3):
Ty = €Ty + [T, + 2971y + h(Fyr, + 7,1y) + 257,71, (6.7)

In this case there are five unknowns (7, 7, 7, ¥, w) (the value of r,,r,
and r, are assumed to be known from feedback, according to the ve-
locity box model), but only four equations. A fifth equation can be

written relating 1) to the current orientation.

The rotation to a given arm orientation can be decomposed into two
rotations - one which rotates the arm to the desired position, and an-
other which rotates the arm about its own axis to give the desired value
of torsion. The first rotation is equivalent to the first two terms in the

equation for a rotation in Fick coordinates (2.5), while the second is
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equivalent to the rotation by the Fick torsional angle ¢/ about the point-
ing direction of the arm. This can be expressed as the composition of

two rotation vectors:
«Q
Ftotal - gr tan (%) o 7 tan <§> (68)

where 7.1 iS the rotation vector representing the combined (total)
rotation to the current arm position from the reference position, €, is a
unit vector in the direction of the pointing direction, 7 is the unit vector
that is the axis of rotation for a rotation from the reference position to
e, while « is the angle of rotation about that axis that takes the arm

to its current pointing direction (from the reference position).

This expression can be expanded using the rule for rotation vector

composition (2.8):

P
2
1-— (67 tan%) . (ﬁtan %)

& tan ¥ + fitan & + &, tan ¥ x i tan £

Ttotal =

Note that 77 and €, are orthogonal, so their dot product will be zero

€y X €, o e X & o
:>7?\total:é)rtan%_k%tan——ké)rtanﬁX% an —
2 e &l 2 2 [é x é 2

(6.9)

Let the reference position be a unit vector pointing straight ahead

/
(éy = [1 0 0] ) and the current pointing direction will be defined

!
as €, = [x y z] , where /22 4+ y2 4 22 = 1. Then

0 y* + 2
€o X € = |—2z| and €, x (€ X €.) = | —xy (6.10)
y —1z

Equation (6.9) is a three element vector equation - we will look at just
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the first component (r,):

2 2
Ty :actang —l—tangtangu

2 2 2 y2 4 22
(U Ty

= tan — =
2 z++y*+2tang

(6.11)

The angle « is the angle between €, and éy, and hence can be expressed

as

« = arccos(€y - €,) = arccos(z) (6.12)

1 —
fan S =4,/ (6.13)
2 14 cosa

the value of 1) can now be found

Using the identity

Tz
x+ \/y2+z2,/}jr—§

With the five equations, a numerical solution for 7 can be found at each

1 = 2arctan (6.14)

time step. The rotation vectors can be calculated by integrating 7. The
rotation vector at the beginning of the movement was assumed to be
the same as that from the experiment. The rotation vectors calculated
were then compared to the experimental data as before using Equation
(6.6).

6.3 Results

6.3.1 Analysis of control movements

When considered in three-dimensional position space, such as in the coor-

dinate system described in Figure 2.1, extended arm movements span the

surface of a sphere (centered at the shoulder), and hence a point to point
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Figure 6.2: Trajectories of the control movements for subject 3. The black

lines show the projections onto the x-y, y-z and x-z planes.

movement can not be a straight line in the workspace. This can be seen in
the control movements — those for subject 3 are shown in Figure 6.2. The
results for the other subjects can be found in Appendix D. The paths for the
same control movement are all very similar - the main cause of variability
here is variation in the x coordinate, which may be caused by small transla-
tions of the shoulder (although it should be noted that the scale of the axes
are not uniform, and so the variation in the x component is quite small).
The trajectories, as expected, are curved, although the projection onto
the y — z plane shows nearly straight paths in this plane. While a geodesic
is the shortest path between two points on a sphere, straight paths in the
y — z plane are not, in general, geodesics. A straight line projection in
the y — z plane means that there is a plane that passes through a straight

line in the y — 2z plane and the path. If the path were a geodesic, then there
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Figure 6.3: Curvature of the control movements (position). Each graph
represents one subject. The points show the mean, and the error bars the
standard deviation of the curvature (defined in (6.1)) of each point to point
movement for each subject. Red shows the value calculated for all three
coordinates, blue is just the movements in the y-z plane. The green points

mark the curvature of a geodesic between the two points.

must also be a plane that passes through the path and the origin. If it were a
geodesic, these two planes must intersect along the path, but the intersection
of two planes will not be a curve, and so in general such a movement is not a
geodesic (purely vertical movements are an exception to this rule because the
two planes are the same). However the range of movements being considered
was sufficiently small that the projection of a geodesic in the y — z plane was
very close to a straight line.

A summary of the curvature of all the movements for all subjects is shown
in Figure 6.3, along with the curvature if the movement were a geodesic. The
geodesic was found by taking the relevant portion of the intersection of the
sphere of reachable points for the extended arm, and a plane that includes
the start and end points and the centre of the sphere.

The diagonal movement r — s shown in Figure 6.2 has some curvature,

more than is expected if it were a geodesic. However, the direction of the
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time time time time

Figure 6.4: Subject 3: Velocity during control movements.

curvature is not consistent across subjects (for example, subject 3 has cur-
vature with a similar magnitude but in the opposite direction). In general,
the curvature of the position is generally quite small, less than 0.1. Most of
the curvature is found due to variation in x values. When the curvature is
calculated for the projection in the y — z plane, significantly smaller values
are found, although often larger than that required for a geodesic, and even
curved in the opposite direction. For many of the movements, the mean
is close to zero, with positive and negative curvature found. This suggests
that for these movements, the curvature is a result of errors rather than a
consequence of the motor plan. Higher curvature is seen in a few cases - for
example, s — v for subject 4 and r — s for subjects 3 and 5, these are all
diagonal movements.

Invariant velocity profiles were found across the control movements, after
being appropriately time scaled. The velocity profiles for all the control
movements for subject 3 are shown in Figure 6.4. The profiles for the other

subjects can be found in Appendix G.
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In the v, and v, components, a bell shaped velocity profile is seen, which
is fairly invariant between movements (which have been time scaled, with the
velocity also scaled to ensure the integral of the graph remains constant). In
the v, component, a reverse in the direction of the velocity is seen - this is
because the movements take place on a sphere.

To compare the variation in the control movements, principal components
analysis was performed. The analysis of the velocity of one set of control

trajectories, that for Subject 5, movement r — s, is shown in Figure 6.5.

Original v curves PC1(24% of var.) PC2(25% of var.) PC3(20% of var.)

Figure 6.5: Principal Components Analysis of the velocity for Subject 5,
movements from r to s. The blue lines are the mean, shown with the addi-
tion(+) and subtraction (-) of a suitable multiple of each Principal component

curve (Ramsay & Silverman, 1997).

The principal components analysis of these movements shows that much
of the variation is due to difference in the amplitude - 24% of the variation is

due to differences in amplitude mostly in the v,, 20% to amplitude differences
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Figure 6.6: Inter-movement variation of the velocity of the control move-
ments. The bars show the magnitude of the area of the graph of the standard

deviation as a proportion of the area of the (absolute value of the) mean.

mostly in the v, component, and 25% due to amplitude differences mostly in
the v, component. It should be noted that the variation is in the amplitude
rather than the timing of the peaks - these are probably due to small errors
in locating the start or end points. In summary, the velocity profiles (here
for 37 control movements) for this control movement are largely invariant.
Similar results are found for other movements and subjects. The variation

in the different components is summarized for all the subjects in Figure 6.6.
Throughout all the movements, the variation in the v, component is the

smallest - this is probably because with extended arm movements, there is

little room for variation in this direction.
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Figure 6.7: Trajectories of the forearm for control movements of subject 3 in
rotation vector space. The black lines show the projections onto the r, —r,,

ry — 7. and r, — r, planes.

When the control trajectories are considered in rotation vector space, a
different picture emerges. The control movements for subject 3 in rotation
vector space are displayed for the forearm (Figure 6.7) and the upper arm
(Figure 6.8). The trajectories for the other subjects can be found in Appen-
dices E and F.

Less uniformity is seen when the movements are considered in rotation
vector space rather than three-dimensional position space. Curvature is seen
for the rotation vectors. The curvature of all the movements is summarized
in Figure 6.9.

Some movements show highly curved trajectories in rotation vector space
(for example the upper arm rotation of subject 5, movement r — s). These

suggest that single axis rotations are not used here. The curvature differs
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Figure 6.8: Trajectories of the upper arm for control movements of subject
3 in rotation vector space. The black lines show the projections onto the

Ty — Ty, Ty — 7, and r, — 7, planes.

between the upper arm and forearm orientations in some of the movements.
An inspection of the graphs shows that this is primarily due to differences in
the r, component.

The angular velocity for the upper arm and forearm for subject 2 are
shown in Figures 6.10 and 6.11. The profiles for the other subjects can be
found in Appendices H and I.

The variation in the different components of the angular velocity is sum-
marized in Figure 6.12. Here it can be seen that in general the variation in 7,
is greater than that for the other components. This effect is more noticeable
in forearm that in upper arm rotations.

This difference can be highlighted with an example, that of Subject 5

for movement ¢ — u (for 37 control movements). The principal components
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Figure 6.9: Curvature of the control movements in rotation vector space.
Each row represents one subject. The points show the mean, and the error
bars the standard deviation of the curvature (defined in (6.1)) of each point

to point movement for each subject in rotation vector space.

analysis of these movements for the forearm and upper arm are plotted in
Figures 6.13 and 6.14. In both sets of movements, the w, and w, components
are bell shaped, nearly symmetric and largely invariant. However, the w,
component shows a great deal of variation in the forearm movements. PCA
shows that the principal components PC1 and PC2 shown in Figure 6.13
are mostly due to large variations in w, - together these two components
account for 58% of the variation. For the upper arm, while the variation
in the w, component is more than that for the other components, it is of
a smaller proportion than for the forearm. Similar results are seen for the
other movements of subject 5, and for the other subjects.

Looking at movements in rotation vector space provides a more complete
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Figure 6.11: Subject 2: Upper arm angular velocity of control movements.

description of the arm’s posture for extended arm movements than position

space. The torsional component w, of the angular velocity shows much more
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Figure 6.12: Inter-movement variation of control movement angular velocity.
The bars are the magnitude of the area under the standard deviation graph

as a proportion of the area under the (absolute value of the) mean.
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Figure 6.13: Principal Components Analysis of the angular velocity of fore-

arm control movements for Subject 5, movements from ¢ to u.
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Original w curves PC1(24% of var.) PC2(27% of var.) PC3(20% of var.)

Figure 6.14: Principal Components Analysis of the angular velocity of upper

arm control movements for Subject 5, movements from ¢ to u.

variation than the other components (especially for movements of the fore-
arm) - this information can not be seen by only looking at the movements in

position space.
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6.3.2 Analysis of double step movements

Initially, the trajectories were analyzed in two dimensions, using the Fick
coordinates 0 and ¢ (but not ¥r). Two models were tested - the super-
position model, and an abort-replan model. The results of these predictions,
along with the actual trajectories are plotted for Subject 3, Set 1 for the
forearm (Figures 6.15, 6.17, and 6.19) and the upper arm (Figures 6.16, 6.18,
6.20).

r-s-t r-s-t r-s-t r-s-t s-t-u Sot-u S-t-u
0 0 0 10 10 10 10
3 3
0 0 0 0
-10 10 L
+10 10 +10 +10
-20 +20
120 120 +20 120
-30 30 30 30 30 30 30
-60 -40 -20-40 -30 -20-40 -30 -20-60 -40 -20-50 0-50 0-50 0
Sot-u tou-s
10 0
0 +10
s
vu_—lo 120
=3
-20 +30
-30 40
-50 0-50 0
(o}
8. ()

Figure 6.15: Predicted and actual two dimensional trajectories for small
overlap (less than 0.2) for the forearm for Subject 3, Set 1 plotted in the
Or(horizontal axis) - ¢p(vertical axis) plane. The red line shows the actual
movement, the solid blue line the prediction from the superposition scheme,
the dashed blue line the first control movement and the green line the pre-

diction from the abort-replan scheme.
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Figure 6.16: Predicted and actual 2D Fick trajectories for small overlap (less

than 0.2) for the upper arm. See Fig. 6.15 for an explanation of the colours.
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Figure 6.17: Predicted and actual 2D Fick trajectories for medium overlap
(between 0.2 and 0.6) for the forearm for Subject 3, Set 1. See Fig. 6.15 for

an explanation of the colours.
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Figure 6.18: Predicted and actual 2D Fick trajectories for medium overlap
(between 0.2 and 0.6) for the upper arm for Subject 3, Set 1. See Fig. 6.15

for an explanation of the colours.
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Figure 6.19: Predicted and actual 2D Fick trajectories for large overlap
(greater than 0.6) for the forearm for Subject 3, Set 1. See Fig. 6.15 for

an explanation of the colours.
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Figure 6.20: Predicted and actual 2D Fick trajectories for large overlap
(greater than 0.6) for the upper arm for Subject 3, Set 1. See Fig. 6.15

for an explanation of the colours.

For ease of comparison, the movements were divided into 3 groups, based
on the “overlap” - this is defined as, assuming superposition takes place, the
proportion of time (of the complete movement) that the two control trajec-
tories are operating at the same time. They were divided into those with
small or no overlap (overlap less than or equal to 0.2), those with moderate
overlap (overlap between 0.2 and 0.6), and those with large overlap (overlap
greater than 0.6). Different behaviour can be seen in the different cases.

When there is no or small overlap, the combined trajectory consists of a
movement to the first target, followed by a movement from the first to the
second target, either with a pause between the movements (if there is no
overlap), or with the second movement starting slightly before the end of the
first movement. The difference between the predictions of the abort-replan
and the superposition schemes is negligible for such movements.

Where there is a moderate overlap (between 0.2 and 0.6), a more curved
trajectory can be seen near the end of the first control trajectory. The addi-
tion of the start of the second control movement causes a smooth turn to the
second target rather than a sharp point. Again, the predictions from both
schemes are very similar, and give predictions close to the actual trajectories.

For large overlaps (greater than 0.6), the trajectory of the double step
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movement very quickly deviates from that of the first control movement, and
highly curved trajectories are generated. In some of these cases, a large differ-
ence is seen between the prediction of the superposition and the abort-replan
scheme. The superposition scheme in these cases provides a much better ap-
proximation to the trajectory. This is because the trajectory does not take
the most direct path (while taking into account smoothness of velocity and
acceleration), as would be the case if an abort-replan scheme were used. The
graphs of large overlap for the other subjects are displayed in Appendix J.

The errors in predicting the trajectories for the two schemes for Subject
3 are summarized in Figure 6.21. The results for the other subjects can be
found in Appendix K.

The results have been presented grouped by ISI. Movements with large
overlaps are only seen for small ISIs. When the ISI is 300ms or above, there
are generally no large overlaps found (an exception is found in Subject 2).
This is because of the reaction time - the first movement would be completed
or nearly completed before the target jumps and the modification can take
place.

Both of the models considered operate in two dimensional Fick coordi-
nate space. The summary of the errors show that in these coordinates both
models have good predictive powers when there is no, small or moderate
overlap. Both models produce very similar predictions for such overlaps.
The predictions of the superposition model are in general slightly worse for
large overlaps compared to smaller overlaps, however they are much better
than the predictions of the abort-replan model. Hence only the superposition
model provides good predictions throughout the entire range of overlaps for

movements considered in terms of #7 and ¢p.
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Figure 6.21: Summary of er-
rors of two dimensional mod-
els for subject 3. The height
of the bars represent the
mean, and the length of the
errors bars the standard de-
viation of the error between
the actual trajectory and the
prediction of the models, for
the superposition model (in
blue), and the abort-replan
model (in red). The results
are divided into those with
no or small (N/S) overlap
(less than 0.2), with moder-
ate (M) overlap (between 0.2
and 0.6), and large (L) over-
lap (greater than 0.6). The
left column shows the results
for the forearm and the right
for the upper arm. Each row
presents the results for the
ISI time shown at the left
of the column. Similar re-
sults are seen for no, small
and moderate overlap, while
the superposition model per-
forms better for large over-

laps.



The rotation vectors equivalent to the Fick angles generated by the su-
perposition scheme were then calculated, under the assumption of Donders’
Law. Two Donders’ law conditions were tested - Listing’s law (r, = 0), and
a second order surface. The rotation vectors for Subject 3, Set 1 are shown
for the forearm (Figure 6.22) and the upper arm (Figure 6.23).

These graphs are plotted in components (r,,r, and r,) against time. The
results for the other subjects for the cases with large overlap are displayed
in Appendix L.

The predicted r, (green) and r, (red) components are quite similar for all
the planning schemes. Slightly different results are found in these components
depending on the Donders’ law constraint because these values are not unique
for given values of 6 and ¢r but depend also on the torsion of the arm.
Significant variation, however, can be seen in the r, component.

The errors in rotation vector space for Subject 3 are summarized in Fig-
ure 6.24. The results for the other subjects can be found in Appendix M.

From Figure 6.24, for forearm movements, considerable errors can be
seen with all the planning schemes - this is due mostly to errors in the 7,
component, as can be seen in Figure 6.22. For the forearm, the Listing’s
law scheme produces more accurate predictions, despite the finding that a
second order surface was a better fit to the data. The process of fitting the
reference position rotated the rotation vectors such that the rotation vectors
are distributed evenly about the r, — 7, plane - meaning that on average
r, = 0 is a good prediction of the torsion. The second order surface, which
can have a large range of r, especially at the edges of the workspace, may
be a poor approximation in parts of the workspace. This may explain why
using Listing’s law may on average give a better fit.

For subject 3, the results for the upper arm showed better results than
that for the forearm. This is in line with the finding in Chapter 4 that the
thickness of the Donders’ surfaces were less for the forearm than the upper
arm. Still, significant deviations are seen. An example of this can be seen in

Figure 6.22. The movements that begin and end at s have different torsional
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r-s-t r-s-t r-s-t r-s-t r-s-t r-s-t r-s-t

Figure 6.22: Rotation vectors (in degrees) during double step movements for
the forearm for Subject 3, Set 1, in components - r, (blue), r,(green) and
r.(red). The dashed lines shows the experimental data, the solid line the
prediction with a second order surface Donders’ constraint on orientation,
the dotted line the prediction of a Listing’s law constraint on orientation
(only the 7, component shown) and the dotted-dash line the prediction for

a second order surface constraint on coordinate velocity.
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Figure 6.23: Rotation vectors (in degrees) during double step movements for
the upper arm for Subject 3, Set 1 in components. See Figure 6.22 for an

explanation of the colours.

values. (This can also be seen from Figure C.2).

However, the other subjects did not show significant differences between
the forearm and the upper arm. For subject 4, the results for the forearm
appear to be better than those for the upper arm.

The results for the model where the constraint was placed on velocity
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Figure 6.24:
errors of three dimensional
models for Subject 3. The
height of the bars is the

and the error bars

Summary of

mean,
length the standard devia-
tion of the error between the
actual trajectory and the pre-
dictions, with different Don-
ders’ law constraints on the
orientation - a second or-
der surface constraint (blue),
a Listing’s law constraint
(green), and a constraint on
the coordinate velocity (red).
The results are divided into
those with no or small (N/S)
overlap (less than 0.2), mod-
erate (M) overlap (between
0.2 and 0.6), and large (L)
overlap (greater than 0.6).
The left column shows the
forearm results, and the right
the upper arm, and each row
the results for the ISI shown.
Similar results are seen for
many of the trials, while for
some the Listing plane con-

straint shows better results.



were also shown on the same figures. These are very close to the results for
the second order surface, because using the velocity does not give any further
information, and the velocity constraint suffers from the same problems as

the constraints on the orientation do.
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6.4 Discussion

The point-to-point control movements generally showed invariant character-
istics. In velocity space, the movements in the v, and v, components were bell
shaped and nearly symmetric. As the length of the arm is fixed throughout
the movement, the v, component is a function of the other two components,
and so in general did not show bell shaped velocity profiles.

The paths were found to be close to geodesics, which can account for
some of the curvature observed. However, curvature of greater magnitude
than that expected for a geodesic was found, and the direction of the cur-
vature varied between subjects. The highest values of curvature were found
for diagonal movements. Atkeson & Hollerbach (1985) found that during un-
constrained vertical movements, curved rather than straight movements are
produced and suggested that this may be related to difficulties in handling
gravity - this may explain the curvature seen in some of the cases.

In Desmurget et al. (1997), it was suggested that curvature is greater in
unconstrained than compliant movements. Although this is not a compliant
movement, a constraint is placed on the movements by the extended arm
requirement. However, although curvature greater than that predicted by
a geodesic movement was found, unlike in their study the direction of the
curvature was not consistent. This suggests that the curvature seen here is a
result of errors rather than a strategy. The movements seen here had invari-
ant characteristics in hand space - this feature they saw only in compliant
hand movements. It may be that the extended arm constraint, which reduces
the available workspace, causes the movements to have similar properties to
compliant hand movements. This in turn may mean that the results found
here can not be extrapolated to general, unconstrained three-dimensional
arm movements.

Some of the rotation vectors describing the movements were found to be
highly curved, meaning that single axis rotations are not, in general, used.
This was in contrast to the nearly straight line path seen with the position.

In angular velocity space, bell shaped profiles were seen in w, and w,,
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however the torsional component w, showed a significant amount of varia-
tion. The torsional component (w,) of the angular velocity can vary without
significantly affecting the final pointing direction. The variation in the tor-
sional component of the angular velocity was found to be greater for the
forearm than for the upper arm.

The results for the double step trajectories show that the movements can
be well modeled in two dimensional Fick coordinates using a superposition
model, where the trajectory consists of the vector addition of the trajectory in
Fick coordinates from the start to the first target, and a trajectory consisting
of the difference in Fick coordinates from the first to the second target. While
an abort-replan model provides good predictions when the overlap is small,
this model fails for larger overlaps.

Evidence of the use of the difference from the first to the second target was
seen in a study of double step movements in the horizontal plane. Boulinguez
et al. (2001) found that when there is a gap between the extinction of the
first target and the presentation of the second target, it is likely that different
processes are used compared to when there is no gap between the two targets.
They proposed that this is because information from the retinal error (the
difference from the first to the second target) would be available in the no-gap
case, but unavailable when there is a gap. The movements that could make
use of this information (which the superposition model uses) had a reduced
length of time before the first observable correction in the arm trajectory.

Some of the errors seen for superposition of trajectories may have been
due to what is known as averaged trajectories. These are trajectories that
rather than beginning to move towards the first or the second target, instead
move towards some intermediate point. Henis (1991) showed that for move-
ments in a horizontal plane a modified version of the superposition model can
be used to predict the trajectories of these movements. It may be possible
to use a similar procedure with these movements to produce a more accurate
model.

The extension of the model to rotation vectors provides reasonable pre-
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dictions, but with significant errors seen in the torsional component (r,).
The amount of variation seen is a small fraction of the possible values that
the arm could take. The errors in torsion appear to be due to the selection
of different torsional values for the start and end of the movements.

In this task, successful completion is achieved by having the arm end up
in the correct pointing direction. The value of torsion is not important in
achieving this goal. This may mean that the value of torsion is less controlled
than the other variables, and the values of torsion seen are by-products of
processes acting on the other variables. Scholz et al. (2000) suggested that
for each task, a set of relevant task variables can be defined, which can
then be combined to form a UCM (“uncontrolled manifold”). A relevant
task variable for this task would be the vector of the pointing direction of
the arm. For other examples, they showed that the variation in the joint
configurations parallel to the set of appropriate task variables had a UCM
that showed significantly less variability to the joint configurations that were
perpendicular. This may provide an explanation of why the variation in
torsion is much greater than in the other components - it does not however
give a way of predicting torsion.

The constraints on the orientation used in the models require knowledge
of the current pointing direction. The use of feedback for trajectory gen-
eration is problematic because of the slow speed of sensory feedback loops.
Proprioceptive or visual feedback is too slow to allow it be used. It is a fun-
damental requirement of feedback models that some information about the
current state is available in order to plan the current action. A solution to
this problem may be found by the use of a forward model (Kawato, 1999).
This is where the current state of the arm is predicted for a given action,
based on learning from previous movements. This allows a feedback model to
be implemented, using the current predicted arm location for feedback. This
could be realized using a hybrid model (Desmurget & Grafton, 2000; Sabes,
2000), which begins with a feed-forward motor plan, which is then corrected

by using the forward model as the movement progresses. The forward model
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itself may be corrected using visual and proprioceptive feedback.

No significant difference was seen between using constraints on orienta-
tion or on velocity. Constraints on coordinate or angular velocity rather than
on rotation vectors do have some advantages. There is more invariance in an-
gular velocity than in rotation vector paths, and more varied, nonholonomic,
constraints can be placed on the angular velocity than the orientation (Cey-
lan et al., 2000). From these results, it is not possible to determine whether
constraints are placed on orientation or coordinate or angular velocity.

The movement plans that have been considered have all been based on
kinematics alone. This assumption is based on the invariance seen in the ve-
locity profiles. However dynamics clearly must play a role in movement plan-
ning. These models implicitly assume that the dynamics would be planned
after the path. A more realistic model may be one that is planned on a com-

bination of kinematic and dynamic factors (Soechting & Flanders, 1998).
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Chapter 7
Summary

This work studied models for the generation of extended arm movements.
Different surfaces were compared for their ability to describe permissible
arm orientations throughout the movement. Additionally, two models, the
superposition and the abort-replan models, were compared and tested for
their success in predicting the trajectories of double step movements.

When considered in rotation vector space, the end points show more
variation in the torsional component (r,) than the other components. This
increased variation is also seen throughout the movements. While the profiles
of the angular velocity are invariant in the horizontal (w,) and vertical (w,)
components, the torsional component (w,) shows considerable variation. The
variation in the torsion is generally greater for the forearm than the upper
arm, suggesting that the forearm torsion is less planned than that of the
upper arm.

Despite this variation, it is possible to fit surfaces to the rotation vectors
representing the movements. These surfaces can act as a constraint on the
values that the rotation vectors can take. This constraint is known as Don-
ders’ law. A flat plane, where r, = 0 provides the best overall fit, although
for each set of movements, a second order surface gives a closer fit, but not
one that is consistent across sets of movements or between subjects. The ori-

entations reachable by a Fick gimbal system with zero torsional component,
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were also considered as a surface, but this showed no improvement over a
flat plane.

Dividing the workspace into smaller subspaces and then fitting the sur-
faces separately for each of the subspaces produces a significantly better fit.
The fit of surfaces to orientations only at stationary locations was also signif-
icantly better than the fit to orientations sampled throughout the movement.
This suggests that the Donders’ law constraints may be applied only at the
endpoints. However, the fit of the surfaces during single step and double step
movements (which are much more curved than single step movements) was
similar. Is seems that the same strategy for constraining torsion is used in
both cases.

When considered in position space, the movements were invariant, and
showed bell shaped velocity profiles in the y and z coordinates. Some curva-
ture was seen, but not with a consistent pattern, suggesting that it was due
to errors. Similar invariance is also seen when the trajectories are consid-
ered in two dimensional Fick coordinates (fr and ¢r), where the torsional
component is not considered.

Superposition in two dimensional Fick coordinates provides a good de-
scription of the double step trajectories, whereas the abort-replan scheme
fails when the deviation of the double step movement from a movement from
the initial location to the first target occurs soon after the movement onset.
The fundamental difference between the two methods is that the superposi-
tion strategy is based on the combination of two movement plans constructed
in advance, while the abort-replan is based on feedback of the current orien-
tation.

The extension to a full three dimensional orientation model also requires
information about the current orientation. The appropriate rotation vector
was selected to be in the correct pointing direction and satisfy a Donders’
law constraint. This produced trajectories where the torsion was a reasonable
approximation to the predictions but did not follow them closely. It was not

possible to determine from the results whether these constraints are applied
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in terms of orientation, or angular or coordinate velocity.

Extended arm movements appear to be planned in two dimensions, per-
haps in two dimensional Fick coordinates (67 and ¢r). Subsequently, double
step trajectories can be well modeled using superposition in two dimensions.
The torsional component appears to be planned to a lesser extent and inde-

pendently from the other two dimensions.
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Appendix A
Quaternions

Quaternions are four-dimensional structures, that have some useful proper-

ties in relation to fixed axis rotations. A quaternion is defined as

g = cos (g) + sin (g) ﬁ (A1)

where 7 is the axis of rotation and @ the size of the rotation (from some
reference point). Note that this gives a scalar component, called ¢y, and a 3
element vector component, called §.

The multiplication of two quaternions is achieved by the following rule
Haslwanter (1995):

qop=qpo— 7P+ (P +ped+7xD) (A.2)

Note also that the product, or composition, of two quaternions gives another
quaternion. This product gives the rotation made up of a rotation from
reference position by p followed by a rotation by gq.

Quaternions have the elegant property that the rotation of a vector ini-
tially at sy by the rotations represented by ¢(¢) can be described by the

quaternion product

s(t) = q(t) o so 0 g7 (1) (A.3)
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Quaternions are related to rotation vectors by the simple relationship

— q_)
F=—
do
— — A.4
= q = qor (A4)
= 52 Go + qU?

Here we will use normalized quaternions (that is, |¢| = /¢ +7- 7= 1), and

hence the inverse ¢! of a quaternion can be written as

¢ =q—q (A.5)
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Appendix B

Setting the velocity rules with
the “Velocity box” model

The velocity box model presented in Chapter 6 has the option of setting the
gimbal score (s). For example, a score of —1 refers to a Fick gimbal with the
Fick torsional component set to zero, whereas a score of zero refers to a flat
Listing’s plane rule. This leads to the question of how these constraints can
be applied using velocity rather than orientation constraints to allow a more
general operator (using velocity constraints allows the use of nonholonomic
constraints).

In Ceylan et al. (2000), it is explained that the Fick pattern is achieved by
rotating f (a unit vector in the gaze / pointing direction) into the horizontal
place. In the paper, it is suggested that this be achieved by normalizing
(making its length 1) Nj = k X (f x k), where k is a body fixed vector

pointing up and Ng. is the normal vector to the plane of permissible angular
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velocity vectors. Equivalently:
Nﬁck = (I,(II{? X (f X ,1{3))
=a((k-k)f — (k- f)k)

0
=a(f—[0}])
f3
4 (B.1)
=a|fy
0
I fi
VRN ];2

where a is the scalar required to normalize the vector. Similarly, they explain
that for a Helmholtz pattern is achieved by rotating f into the sagittal plane

(ie normalizing Nyemnottz = J X (f X j)). This can also be expressed as

. S

NHelmholtz Y
VIT+ £ J
3

Furthermore, they stated that the normal to the velocity plane for List-

(B.2)

ing’s law is halfway between the two previously mentioned normals, that is,
it bisects the angle between Npelmholtz and Npic. They stated that this is
equivalent to Nysting = f +¢ normalized. This is the half angle rule (Van Op-
stal, 2001). If these two formulations are equivalent, then (where d and e are

the appropriate scalars to normalize):

d(NFick + NHelmholtz) = e(f + Z)

) S . fi ) fi+1
sd| —— ||+ —— |0 | =
VAR || VETE ||| VTR | ]
3 3

(B.3)
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Considering just the second component, then:

d 1
N A o oy
d 1

TR VI R R

and just the third component:

1

d
VIt +f§f3 N Y
d 1

= =
VE+E V1R
Then from (B.4) and (B.5),

fs

d d
VE+ R VAR
> fi+fh=r+1f

= fo==%f3

Now the left hand side of (B.3) can be more succinctly expressed as:

y 2f1
d(NFick + NHelmholtz) - T f2
VIE+ 13
fs
This allows d to be easily calculated (it is the normalizing factor):
L=
VIt T
_ VS
VAT 23

Now (B.3) and (B.7) can be rewritten as
. 2fr

VAT T2/ f

3

d(NFick + NHelthltZ) =
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Now looking back at the second component in (B.3), we can see that

1 1

Vifir2E i+ 2
= 4ft +2f; = (i +1)*+2f;
=3ff—2fi—-1=0

(B.10)

1
= fi=1or —3

Substitution of f; = % into (B.3) causes a contradiction, and hence the only

solution is for f; = 1. As f is a unit vector, this implies that it is the
1

vector f = |0]|. This is the vector that is pointing straight ahead - ie, the

0
reference position. This is the unique position where the normal to the Fick
1
and Helmholtz velocity planes will be the same (equal to |0[ ), which is also

0
the normal vector for Listing’s law at this point, being the reference position.

Hence the stated conclusion that (B.3) is true is actually only the case in the
special case of the reference position.

The continuum between a Fick gimbal and a Helmholtz gimbal in terms
of orientation can be expressed by the gimbal score (3.7). To build a realistic
“Velocity box” model, it would be necessary to be able to express positions
in the continuum as velocity constraints and not just the extreme cases.
Previous experimental results, for example Ceylan et al. (2000), have shown
gimbal scores can vary and are not limited to -1, 1 and 0 (representing a Fick
gimbal, Helmholtz gimbal and Listing’s law).

One option is to set three normal vectors (the one defined by Listing’s
law (the half angle rule), the normal for a Fick gimbal, and the normal for a
Helmholtz gimbal) and then interpolate between then for twist scores between
these values. It is not possible to just interpolate between the value for a

Fick gimbal and a Helmholtz gimbal for the reasons described previously. It
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is unclear if in such a scheme « corresponds to the twist score s.

Nisin _aNic _Nisin if o <0
N(a, f) _ Listing ( Fick List g) (B]_]_)
NListing + Cl4(]\]-Helrnholtz - NListing) ifa>0

An alternative approach would be to use coordinate velocity constraints.

This method was explained in Chapter 5.
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Appendix C

Spread of rotation vectors at
end points

The following graphs show the spread of the rotation vectors at each of the
start / end points. The graph for Subject 1 is shown in the main body of

the text (Figure 4.5). The rows represent the targets R, S, T, U, V (and W
for subject 2).
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Figure C.2: End point spread of forearm rotation vectors for subject 3, Green

denotes double step movements and red control movements ending at a par-
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Figure C.3: End point spread of forearm rotation vectors for subject 4, Green
denotes double step movements and red control movements ending at a par-

ticular point, blue denotes movements starting at that point.
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140



-20,
040,
_608
~8 0
y(cm?QQZO 5 x(cm)
ftob

Figure D.1: Trajectories of the control movements for Subject 1.

Appendix D

Paths of control movements

(position)

The paths of the control movements are shown here for all subjects except

subject 3 (this is shown in Figure 6.2).
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Figure D.2: Trajectories of the control movements for Subject 2.
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Figure D.3: Trajectories of the control movements for Subject 4.
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Figure D.4: Trajectories of the control movements for Subject 5.
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Appendix E

Trajectory of forearm control

movements (orientation)

The orientations of the control movements for forearm movements are shown

here for all subjects except subject 3 (this is shown in Figure 6.7.

Figure E.1: Trajectories of the forearm control movements (orientation) for

Subject 1.
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Figure E.2: Trajectories of the forearm control movements (orientation) for
Subject 2.
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Figure E.3: Trajectories of the forearm control movements (orientation) for
Subject 4.
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Figure E.4: Trajectories of the forearm control movements (orientation) for
Subject 5.

146



Appendix F

Trajectory of upper arm control

movements (orientation)

The orientations of the control movements for the upper arm are shown here

for all subjects except subject 3 (this is shown in Figure 6.8.
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Figure F.1: Trajectories of the upper arm control movements (orientation)

for Subject 1.
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Figure F.2: Trajectories of the upper arm control movements (orientation)
for Subject 2.
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Figure F.3: Trajectories of the upper arm control movements (orientation)
for Subject 4.
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Figure F.4: Trajectories of the upper arm control movements (orientation)
for Subject 5.
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Appendix G

Velocity of control (single step)

movements
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Figure G.1: Subject 1: Velocity during control movements.
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Figure G.2: Subject 2: Velocity during control movements.
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Figure G.3: Subject 3: Velocity during control movements.

151



rtos stov stot ttou utos

o N bd o

5 5 / 5
0 M.
-5 -5
0 0.5 1 0 0.5 1
time time

Figure G.4: Subject 4: Velocity during control movements.
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Figure G.5: Subject 5: Velocity during control movements.
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Appendix H

Forearm angular velocity of

control (single step) movements

rtos rtot stot stou ttov ttow utor utot
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Figure H.1: Subject 1: Forearm angular velocity during control movements.
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Figure H.2: Subject 2: Forearm angular velocity during control movements.
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Figure H.3: Subject 3: Forearm angular velocity during control movements.
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Figure H.5: Subject 5: Forearm angular velocity during control movements.

155



Appendix 1

Upper arm angular velocity of

control (single step) movements

utot
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Figure I.1: Subject 1: Upper arm angular velocity of control movements.
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Figure I.2: Subject 2: Upper arm angular velocity of control movements.
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Figure I.3: Subject 3: Upper arm angular velocity of control movements.
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Figure [.4: Subject 4: Upper arm angular velocity of control movements.
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Figure I.5: Subject 5: Upper arm angular velocity of control movements.
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Appendix J

Comparison of planning
schemes for double step
movements in two-dimensional

Fick coordinates

The following graphs show the predictions of the two dimensional models
(in terms of O and ¢r), for the superposition scheme and the abort-replan
scheme, compared with the experimental data. In the following graphs, red
represents the experimental data, the dashed blue line the first control move-
ment, the blue solid line the prediction of the superposition scheme and the

green line the prediction of the abort-replan scheme.
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Figure J.1: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the forearm for Subject 1
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Figure J.2: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the upper arm for Subject 1
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Figure J.3: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the forearm for Subject 2
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Figure J.4: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the upper armifsy Subject 2
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Figure J.5: Predicted and actual 2D Fick trajectories with large overlap

(greater than 0.6) for the forearm for Subject 3
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Figure J.6: Predicted and actual 2D Fick trajectories with large overlap

(greater than 0.6) for the upper arm for Subject 3
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Figure J.7: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the forearm for Subject 4
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Figure J.8: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the upper arm for Subject 4
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Figure J.9: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the forearm for Subject 5
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Figure J.10: Predicted and actual 2D Fick trajectories with large overlap
(greater than 0.6) for the upper arm for Subject 5
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Appendix K

Summary of errors during 2D

superposition

These graphs show the mean (the height of bar graph) and the standard
deviation (the length of the error bar) for the two dimensional Fick coordinate
superposition scheme (in blue) compared to an abort replan scheme (in red),
divided into no or small overlap (N/S) - less than 0.2, moderate overlap (M)
- between 0.2 and 0.6, and large overlap(L) - greater than 0.6. Each row
represents the ISI time shown next to it. The results are only shown for

groups where 3 or more trials are found.
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Figure K.1: Comparison of errors between the two-dimensional superposition
and abort-replan scheme for Subject 1 (left) and Subject 2 (right).
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Figure K.2: Comparison of errors between the two-dimensional superposition
and abort-replan scheme for Subject 4 (left) and Subject 5 (right).
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Appendix L

Comparison of planning
schemes for double step
movements in rotation vector

space

These graphs show rotation vectors during double step movements in com-
ponents - 7, (blue), r,(green) and r,(red). The dashed lines shows the ex-
perimental data, the solid line the prediction with a second order surface
Donders’ constraint on orientation, the dotted line the prediction of a List-
ing’s law constraint on orientation (only the r, component shown) and the
dotted-dash line the prediction for a second order surface constraint on co-

ordinate velocity.
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Figure L.1: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the forearm for Subject 1.
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Figure L.2: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the upper arm for Subject 1.
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Figure L.3: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the forearm for Subject 2.
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Figure L.4: Predicted and actual rotation vectors (in degrees) with large
overlap (greater than 0.6) for the upper arm for Subject 2.
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Figure L.5: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the forearm for Subject 3.
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Figure L.6: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the upper arm for Subject 3.
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Figure L.7: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the forearm for Subject 4.
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Figure L.8: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the upper arm for Subject 4.
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Figure L.9: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the forearm for Subject 5.
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Figure 1..10: Predicted and actual rotation vectors (in degrees) with large

overlap (greater than 0.6) for the upper arm for Subject 5.
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Appendix M

Summary of errors after
superposition in rotation vector

space

These graphs show the mean (the height of bar graph) and the standard de-
viation (the length of the error bar) for the three dimensional rotation vector
models compared with the actual data. Blue shows the superposition scheme
with a second order surface Donders’ law constraint, green is with a flat List-
ing’s plane constraint, and red is when a coordinate velocity constraint is
used. The results are divided into no or small overlap (N/S) - less than 0.2,
moderate overlap (M) - between 0.2 and 0.6, and large overlap(L) - greater
than 0.6. Each row represents the ISI time shown next to it. The results are

only shown for groups where 3 or more trials are found.
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Figure M.1: Comparison of errors between the three dimensional models for
Subject 1 (left) and Subject 2 (right).
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Figure M.2: Comparison of errors between the three dimensional models for
Subject 4 (left) and Subject 5 (right).
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