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Chapter 1General introductionThis work deals with strategies for the generation of three dimensional, fullyextended arm pointing movements. These are movements where the out-stretched arm moves from pointing at one target to another. Such a move-ment is performed by humans with little thought, but despite the apparentsimplicity of these movements, there is much that is still unclear about themechanisms that generate these movements.1.1 Trajectory formationEarly studies of arm movements with the hand constrained to a plane (andhence two dimensional movements) showed that the hand path during suchmovements is consistent, both for a single subject and between subjects(Georgopoulos et al., 1981; Soechting & Lacquaniti, 1981). Such movementshave an invariant, single peaked velocity pro�le. Movements in the horizontalplane have also been observed to follow a straight line (Morasso, 1981). These�ndings suggest that such movements are planned in Cartesian coordinatesat the hand level (Hollerbach, 1982), that is, in extrinsic coordinates. Thisimplies that the central nervous system (CNS) later transforms the plan fromextrinsic coordinates into a pattern of joint covariation (the plan in termsof joint coordinates). This transformation is non-linear and non-trivial be-1



cause additional functional constraints are required due to joint redundancy.(Desmurget et al., 1998).The other option would be to plan the movements in joint coordinates -the Cartesian coordinates at the start and the end of the movement wouldbe converted to joint coordinates, and then the movement would be plannedin joint space, in intrinsic coordinates. Due to the non-linear relationshipbetween Cartesian and joint coordinates, invariant paths in joint coordinatesdo not in general represent invariant paths in Cartesian coordinates. Incontrast to the above results, some experiments suggest that invariance is notseen in Cartesian coordinates. For example, in Atkeson & Hollerbach (1985)it was found that the curvature of unrestrained point to point movementsin the vertical plane was dependent on the location in the workspace. Ina cylinder grasping experiment, Desmurget & Prablanc (1997) found stablejoint covariation patterns, while the spatial paths were consistently curvedand varied with respect to the orientation of the object to be grasped.An explanation of the con
icting results mentioned previously was sug-gested by Desmurget et al. (1997). From their experimental results andthose from other studies, they concluded that compliant and unconstrainedmovements are planned di�erently - compliant movements (motion that isconstrained by an external contact) are planned in task space and hence showstraight line trajectories, while unconstrained movements are not planned intask space. Desmurget et al. (1998) presented several possible explanationsfor the di�erent planning strategies. They suggested that in constrainedmovements, the general strategies used by the CNS are not relevant becauseof the constraints of the task. Planning planar compliant movements, whichentails constraints on the direction of the acceleration in extrinsic coordi-nates, is easier in task space, while unconstrained movements do not need toconsider these constraints.Alternatively, it has been suggested that the di�erences in curvature be-tween horizontal and vertical movements may be due to di�culties in dealingwith gravity (Atkeson & Hollerbach, 1985), or due to distortions in the per-2



ception of a straight line (Wolpert et al., 1995).1.2 Internal modelsInternal models are a way of modeling the processes in the brain from thedesired motor event to the issuing of motor commands (Kawato, 1999), andcan be used for modeling the generation of extended arm trajectories. Armmovements are too fast for the brain to solely use biological feedback tocontrol the movement (Kawato, 1999). Internal models, which contain anacquired inverse dynamics model of the arm, can be executed to achieve themovement.The kinematics of the arm refer to the geometrical and time-based prop-erties of the motion - the displacements, velocities and accelerations. Kine-matic models look at the motion without considering the forces necessary toachieve such movements. The minimum jerk model (Flash & Hogan, 1985)is an example of a kinematic model - it predicts straight line paths for move-ments in a horizontal plane. After planning at a kinematic level, the forcesnecessary to generate the movement must be computed. In the case of theminimum jerk model, the necessary joint torques for these movements couldbe calculated using the equilibrium point hypothesis (Flash, 1987).The subject of dynamics deals with the forces and torques that producemotion. The forces and torques are related to the kinematics through cou-pled nonlinear di�erential equations. An example of a dynamic model isthe minimum torque-change model (Uno et al., 1989). This model predictshand path by minimizing the sum of square of the rate of change of torqueintegrated over the entire movement.Soechting & Flanders (1998) concluded that neither a kinematic nor adynamic model could successfully account for all features of arm movements,but that movements are constrained by optimality criteria that take intoaccount both kinematic and dynamic considerations.
3



1.3 Thesis OutlineThis work considers the following questions:1. What strategies, if any, are used in extended arm movements to dealwith kinematic redundancy, that is, which orientations from the in�nitenumber of possibilities are selected? Can a rule valid for extended armmovements in the entire workspace be determined? Is adherence to therule di�erent during the movement and when stationary, or di�erentfor point to point or perturbed trajectories?2. What models can be used to describe the generation of trajectories forextended arm movements? Do the models describe both simple point topoint movements and double step movements where the target jumpsafter the movement has begun? Is a superposition strategy used, orsome other strategy? How is the torsion of the upper arm and forearmconstrained throughout the movement?Chapter 2 presents di�erent representations of rotations adopted in thisresearch. Methods for the generation of, and conversion between rotationmatrices, Fick coordinates and rotation vectors are presented, as well astechniques for calculating the coordinate and angular velocity.Chapter 3 introduces the concepts involved with kinematic redundancy.It explains a solution to the degrees of freedom problem known as Donders'law, and describes studies of the eye, eye/head system and the arm that showthe applicability of this law.Chapter 4 presents the methods and results of an experiment designedto test the validity of Donders' law under a range of situations. The varia-tion seen in the di�erent components of the rotation vectors are compared,and surfaces, which can act as constraints on the rotations, are �tted to therotation vectors that describe the movements. These surfaces are compared4



for movements in several di�erent situations. The study aims to determinewhich strategies could realistically be used for constraining the orientationsof the arm.Chapter 5 describes in more detail models for trajectory generation foreye saccades and arm movements, and suggests some novel models. The useof superposition to describe double step movements is explained and the im-plications for the various models are considered. The theoretical feasibility ofthese models is considered, and predictions are generated for the appropriateschemes.Chapter 6 presents an experiment to test the predictive powers of the ap-propriate models presented in Chapter 5. In relation to these models, thefeatures of the trajectories are considered. The aim of this chapter is to �ndand experimentally con�rm a model that describes the full three dimensionalbehaviour of the arm during extended arm pointing movements.

5



Chapter 2Representations of rotationsThere are many ways of parameterizing 3D rotations, and the selection ofan appropriate parameterization can aid in analysis. The representationsadopted in this research will be presented in this chapter. Unlike position,the combination of rotations is not commutative, and with some parameteri-zations, even the seemingly simple task of composing two rotations becomesvery di�cult.The coordinate system adopted in this research was de�ned such thatthe x axis is straight ahead, the y axis points horizontally to the left, andthe z axis points vertically up. The origin is �xed in space. This is showngraphically in Figure 2.1.
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Figure 2.1: Coordinate system (back view).A popular way of describing the rotation of a vector is a rotation matrix.A rotation matrix R is a 3 by 3 matrix such that a vector in the direction of6



~a will be rotated to a vector ~b by the rotation matrix R:~b = R � ~a (2.1)where � denotes matrix multiplication.A rotation about the space-�xed z axis by � is given by (Haslwanter,1995): Rz (�) = 2664cos � � sin � 0sin � cos � 00 0 13775 (2.2)Similarly for rotations of � about the space-�xed y axis and  about thespace-�xed x axis:Ry (�) = 2664 cos� 0 sin�0 1 0� sin� 0 cos�3775 ; Rx( ) = 26641 0 00 cos � sin 0 sin cos 3775 (2.3)Rotation matrices can be combined by matrix multiplication - this isequivalent to performing one rotation followed by another. For example, therotation of the vector ~a by � about the space-�xed z axis, followed by arotation of � about the space-�xed y axis is given by~c = Ry (�) � Rz (�) � ~a (2.4)Equation (2.4) can also be reinterpreted as rotations about limb-�xedaxes, that rotate with the limb. It is equivalent to performing a rotationabout the limb-�xed y axis by �, then about the rotated z axis by �. A morecomplete description of this phenomenon is given in Haslwanter (1995).A three dimensional rotation can be expressed as the composition of threeone-dimensional rotations. In robotics, a commonly used system is thatof Euler angles Craig (1986). A di�erent system used in the occulomotorcommunity (which is one of many possible representations) is the Fick system(Van Opstal, 1993). A rotation is �rst made about the vertical axis (�F ), then7
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Figure 2.2: A Fick system of rotations (back view). A rotation is �rst madeabout the �xed vertical axis with angle �F , followed by a rotation about therotated horizontal axis, with angle �F , and lastly a rotation about the visual/ pointing axis of  F .about the rotated horizontal axis (�F ), and �nally about the new visual /pointing axis ( F ), as shown in Figure 2.2. This sequence of rotations canbe written using rotation matrices:RF = Rz (�F ) � Ry (�F ) � Rx( F ) (2.5)This sequence of rotations is arbitrary, and could be replaced by a dif-ferent sequence. Another commonly used system is the Helmholtz system(Van Opstal, 1993), which consists of a rotation about the horizontal axis by�H , followed by a rotation about the rotated horizontal axis by �H , followedby a rotation about the new visual / point axis by  H :RH = Ry (�H) � Rz (�H) � Rx( H) (2.6)A more e�cient method can be used to describe rotations, that also avoidsthe need to describe a rotation as a composition of three rotations. A non-redundant representation will be used here - the so called `rotation vector'(Haslwanter, 1995). 8



2.1 Rotation vectorsThe rotation vector (which strictly speaking is not actually a vector) de-scribes a rotation about an axis ~n (which is a unit vector) by the angle �, isde�ned by ~r = ~n tan��2� (2.7)The inverse of a rotation vector ~r is de�ned by ~r�1 = �~r. A rotation vectorhas 3 coe�cients. The direction of the vector indicates the axis of rotation,while its magnitude is a measure of the angle. The use of the length torepresent the angle can be problematic, because with angles close to 180�,the length of the vector will approach in�nity. The pointing range used forthis experiment will not come close to 180� hence this will not be a problem.The composition of two rotation vectors, that is ~ra followed by ~rb is givenby ~rb � ~ra = ~rb + ~ra + (~rb � ~ra)1� ~rb � ~ra (2.8)where � is the vector (cross) product, and � is the dot (inner) product. Wecan �nd the rotation necessary to go from a rotation ~rc (relative to some�xed orientation) to ~rd (relative to the same �xed orientation) which we willcall ~rdc by letting ~ra = ~r�1c and ~rb = ~rd in (2.8) to give~rdc = ~rd � ~rc + (~rc � ~rd)1 + ~rc � ~rd (2.9)The rotation of a vector ~s0 = hx0 y0 z0i0 by the rotation represented bya rotation vector ~r = hrx ry rzi0 can be found using equations (A.2),(A.3)
9



and (A.4):s = 2664xyz3775 = 11 + r2x + r2y + r2z �2664 (1 + r2x � r2y � r2z)x0 + 2(rxryy0 � rzy0 + ryz0 + rxrzz0)2rxryx0 + 2rzx0 + y0 � r2xy0 + r2yy0 � r2zy0 � 2rxz0 + 2ryrzz0�2ryx0 + 2rxrzx0 + 2rxy0 + 2ryrzy0 + z0 � r2xz0 � r2yz0 + r2zz03775(2.10)In the special case that this rotation is from the reference orientation that ispointing straight ahead (~s0 = h1 0 0i0), the above equation simpli�es tos = 2664xyz3775 = 11 + r2x + r2y + r2z 26641 + r2x � r2y � r2z2(rxry + rz)2(�ry + rxrz) 3775 (2.11)A rotation vector can be derived from a rotation matrix (Haslwanter, 1995):~r = 11 +R1;1 +R2;2 +R3;3 2664R3;2 � R2;3R1;3 � R3;1R2;1 � R1;23775 (2.12)where Rx;y is the element in row x and column y in the rotation matrix.The rotation vector corresponding to an orientation in the Fick system(�F ; �F ;  F ) can be found using Equations (2.5) and (2.12):~r(�F ;�F ; F ) = 11 + cos cos � + cos �(cos + cos �) + sin� sin sin � �2664cos� sin + cos � sin � cos sin� sin �sin�+ cos cos � sin�+ sin sin �� cos � sin� sin + (cos�+ cos ) sin � 3775 (2.13)
10



2.2 Coordinate velocity vectorsThere are two measures of velocity when considering rotations - coordinatevelocity and angular velocity. Coordinate velocity, _~r, is calculated as thederivative of the rotation vector with respect to time (Van Opstal, 1993):_~r = d~rdt (2.14)As this gives the relative displacement per time unit, it is independent of thecurrent position.Velocities in Fick coordinate space can be converted to coordinate velocityspace by taking the time derivative of (2.13):~_r( _�F ; _�F ; _ F ;�F ;�F ; F ) = 14 �cos �2 cos  2 cos �2 + sin �2 sin  2 sin �2�2 �2664 (1 + cos� cos �) _ � _� sin�� _� sin �(cos + cos �) _�+ cos�( _� sin + _ sin �)(1 + cos� cos ) _� � _ sin�� _� sin 3775 (2.15)
Note that the coordinate velocity is dependent not only on the velocity inFick angles ( _�F ; _�F ; _ F ) but also on the Fick angles themselves (�F ; �F ;  F ).2.3 Angular velocity vectorsThe angular velocity vector describes an instantaneous rotation from oneposition to the next. The direction of the angular velocity vector indicatesthe axis of rotation, while the length describes the speed of rotation. Thederivation of angular velocity is clearer using quaternions (which can thenbe converted into rotation vectors). Appendix A contains the de�nition of aquaternion.The rotation of a vector ~s0 can be expressed as~s(t) = q(t)~s0q�1(t) (2.16)11



Taking the derivative of this with respect to time gives:_~s(t) = _q(t)~s0q�1(t) + q(t)~s0 _q�1(t) (2.17)The de�nition of unity for quaternions says that qq�1 = 1. The time deriva-tive of this is: _qq�1 + q _q�1 = 0 (2.18)) _q�1 = �q�1 _qq�1 (2.19)) _q = �q _q�1q (2.20)Using these identities, and (2.16), (2.17) can be rewritten as_~s(t) = _qq�1q~s0q�1 � q~s0q�1 _qq�1= _qq�1~s(t)� ~s(t) _qq�1 (2.21)Now using the identity for quaternions (Van Opstal, 2001) (which can beeasily obtained from (A.2)): pq � qp = 2p� q (2.22)(2.21) can be simpli�ed to _~s(t) = ( _qq�1)� ~s(t) (2.23)The angular velocity is related to the rotation by the kinematic relationship(Kreyszig, 1993) _~s(t) = ~!(t)� ~s(t) (2.24)Hence we have the expression for angular velocity (as a quanternion, althoughthe scalar part is zero): w(t) = 2 _qq�1 (2.25)To convert this into rotation vector notation, �rst expand using quaternionmultiplication. !(t) = 2( _q0q�10 � _~q � ~q�1 + q0 _~q � _q0~q + ~q � _~q)!(t) = 2(q0 _~q � _q0~q + ~q � _~q) (2.26)12



Note that the scalar component is zero, this is becaused (jqj2)dt = ddt �q20 + ~q � ~q�= 2 _q0q0 + 2_~q � ~q= 0 (2.27)and _q0q�10 = _q0q0 and � _~q � ~q�1 = _~q � ~q. Equation (2.27) equals zero becausejqj is always 1. Converting into rotation vectors using (A.4) gives:~!(t) = 2(q0 _~q � _q0~q + ~q � _~q)= 2(q0 _q0~r + q0q0 _~r � _q0q0~r + q0~r � ( _q0~r + q0 _~r))= 2(q20 _~r + q0 _q0(~r � ~r) + q20(~r � _~r))= 2q20( _~r + ~r � _~r)= 2(_~r + ~r � _~r)1 + ~r � ~r (2.28)
The last step was obtained by noting that for unit quaternions,qq20 + ~q � ~q = 1) q20 + ~q � ~q = 1) q20 = 1� ~q � ~q) q20 = 1� q20 (~r � ~r)) q20(1 + ~r � ~r) = 1) q20 = 11 + ~r � ~r

(2.29)
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Chapter 3Background on kinematicredundancy
3.1 IntroductionThis chapter focuses on the kinematic redundancy of human limbs. Humanlimbs are made up of joints, which may have more than one degree of freedom- for example the shoulder has three rotational degrees of freedom. Due tothe redundant degrees of freedom in the limbs, a certain posture of the ende�ector, whether it be the eye, head or hand, can be reached by numerousjoint con�gurations.In the tasks being considered here, the extended arm has four rotationaldegrees of freedom. A model of the arm being considered is shown in Fig-ure 3.1. It should be noted that the joints have limited ranges due to physi-ological constraints - the approximate ranges of the joints are given in Table3.1.The workspace for this experiment, movements in front of the body, canbe de�ned by half a sphere. To specify a point on this surface, only twodegrees of freedom are needed. This means that any position on the surface ofthis half sphere can be achieved by an in�nite number of joint con�gurations.When the arm is pointing in some direction, it is easy to see that just by14



prorot

azi

eleFigure 3.1: The model of the arm used in this research. The shoulder isapproximated by a spherical joint, which can be modeled as rotations aboutthree intersecting axes. The rotation about these axes gives the azimuth(azi), elevation (ele) and rotation (rot) of the upper arm. The rotation of theforearm relative to the upper arm is known as the pronation (pro). Flexionof the elbow was not allowed in this model. Additionally, rotation was notallowed at the wrist (due to the brace) and so the forearm and hand wereconsidered as one link.rotating the arm about its own axis, alternate con�gurations can be foundthat still maintain the same pointing direction.The orientation of an object after rotations along two noncolinear axesis dependent on the order of the rotations (Gielen et al., 1997). This meansthat the orientation of a three degrees of freedom joint such as the shoulderor eye depends on previous rotations. If attention is not paid to the torsion,then physiologically impossible positions may result as an accumulation oftorsion. A system is required to prevent such situations from occurring.Studying solutions to the problem of kinematic redundancy in the eye mayshed light on possible solutions for pointing with the arm. While dynamicallythe properties of the upper arm and the eye are very di�erent, both have threedegrees of freedom while only two are required for the task being considered(pointing with the arm, or gaze �xation with the eye).From measurements of visual after-images at various positions, Dondersdiscovered in 1848 that for the upright and stable head, each gaze direction15



Joint angle range (degrees)elevation (ele) 180azimuth (azi) 180rotation (rot) 90pronation (pro) 90Table 3.1: Approximate range of motion of the joints in terms of the jointangles. The data is based on average values from Luttgens & Hamilton(1997).has a unique 3-D eye orientation (Crawford, 1998). This is despite the factthat the eye is physically capable of rotating about the line of sight and gen-erating many orientations that have the same gaze direction. The uniquenessof eye orientation for any gaze direction that was found became known asDonders' law. It does not, however, specify which orientation is to be used.Listing later quanti�ed this idea by stating that the axes of rotation froma particular reference position to any eye position will lie in a plane (Henn,1997). This plane is now known as Listing's plane. Hence the orientationat any eye position is speci�ed. These results were published and indirectlycon�rmed by Helmholtz in 1867 (Crawford, 1998).3.2 Results from studies of eye saccadesListing's plane can be parameterized using rotation vectors:rx = a+ bry + crz (3.1)where rx; ry and rz are components of rotation vectors. If the coordinatesystem is appropriately translated and rotated (see section 4.2.4), so thatthe rotations are as if they came from a certain reference position, then (3.1)simpli�es to be the Y-Z plane, that isrx = 0 (3.2)16



Such a system has the bene�t that torsion is not accumulated, and is uni-form everywhere. This has been experimentally con�rmed for head-�xed, eyesaccades �xating on distant targets (Tweed et al., 1990).However it should be noted that for other situations, Listing's law ismodi�ed or violated in a systematic fashion, such as when the eyeballs rotateinwards to see a close object or during head-free gaze shifts. A more detailedreview can be found in Crawford (1998).3.3 Results from eye and head studiesFrom an experiment examining gaze shifts under di�erent situations, Glenn& Vilis (1992) found that the orientation of the head also obeys Donders'law. However, the orientations were not con�ned to a 
at Listing surface,but rather to a twisted surface. A second-order surface can be parameterizedby the equation (Glenn & Vilis, 1992):rx = d+ ery + frz + gr2y + hryrz + jr2z (3.3)The coe�cient h is often called the twist score, as it is a quantitative measureof the degree of any twist in the surface.The surfaces for head orientations found by Glenn and Vilis were discov-ered to be similar to the surface produced by a Fick gimbal system, with thetorsional Fick angle ( F ) set to zero. A gimbal is a system where the axesare nested within each other. A Fick gimbal, shown in Figure 2.2, is wherethe horizontal axis is nested in the vertical.The Fick strategy (Hore et al., 1992) is where rotations are made wherethe torsional component in Fick coordinates,  F , is set to zero. Expanding
17



(2.5) (while setting  F = 0) gives:RF ( f = 0) = 2664cos �F � sin �F 0sin �F cos �F 00 0 137752664 cos �F 0 sin�F0 1 0� sin�F 0 cos �F377526641 0 00 1 00 0 13775= 2664cos �F cos�F � sin �F cos �F sin�Fsin �F cos�F cos �F � sin �F sin�F� sin�F 0 cos�F 3775 (3.4)This can then be converted into a rotation vector using (2.12):~r = 11 + cos �F cos�+ cos �F + cos�F 2664 � sin �F sin�Fcos �F sin�F + sin�Fsin �F cos�F + sin �F 3775 (3.5)Then the product of ryrz will beryrz = sin �F sin�F cos �F cos�F + sin �F sin�F cos �F + sin �F sin�F cos�F + sin �F sin�F(1 + cos �F cos�+ cos �F + cos�F )2= sin �F sin�F (1 + cos �F cos�F + cos �F + cos�F )(1 + cos �F cos�F + cos �F + cos�F )2= sin �F sin�F1 + cos �F cos �F + cos �F + cos�F (3.6)It can be seen from equations (3.5) and (3.6) that rx can be expressed interms of this product: rx = s(ryrz); where s = �1 (3.7)By repeating the above process in Helmholtz coordinates (2.6), then equation(3.7) will be the same, but with s = +1. Thus this formula provides a simpleway of converting from coordinates in Fick and Helmholtz coordinates in thespecial case that the torsional component (in Fick or Helmholtz coordinates)is zero. s is known as the gimbal score (Glenn & Vilis, 1992). A score of18



�1 refers to a Fick gimbal, and +1 to a Helmholtz gimbal. A score of 0 isequivalent to a Listing's plane (3.2). An advantage of both types of gimbalswith torsional angles of zero is that the orientation of the horizontal axis ofthe limb with respect to the horizon, and with respect to the pointing arm,remains constant.A common example given of a Fick gimbal system is that of an earth-�xed telescope, which can rotate about a �xed vertical axis, and a movinghorizontal axis. Although this is a multiple joint system, the Fick system canalso be used with a single joint system like the extended arm. Whereas withthe earth �xed telescope the rotation about each axis involves a separatejoint, with the arm both rotations are applied to the same joint in order.The orientations reachable using such a sequence of rotations produce thesurface which can act as a constraint on the permissible rotation vectors.While the head showed a twisted Fick-like surface for regular gaze shifts,Ceylan et al. (2000) found that if pinhole goggles were worn, making the gazeshifts for the head similar to those of an eye, the twisted surface become 
atlike that for the eye. They concluded that this was because the motor systemselects appropriate rules for motor optimization based on the constraints ofthe limb and the task.The orientation of the eye in space (during head-free eye movements) wasalso found to have a Fick-like surface (Glenn & Vilis, 1992). A suggestedreason for this was that the use of a Fick gimbal system means that horizontalgaze shifts are predominantly performed by the head, whereas vertical gazeshifts are predominantly performed by the eyes. This may serve to conserveenergy - vertical gaze shifts using the eye use much less energy than rotatingthe head to achieve the same gaze shift.3.4 Results from studies of hand movementsStraumann et al. (1991) found that the orientations of the upper arm (whilethe elbow angle was �xed) during movements over a small range (�25� rela-19



tive to the forward position) were a good �t to a 
at plane, suggesting thatarm rotations may also be planned on the basis of a Listing's plane.Over a larger range (�45�), Hore et al. (1992) observed that duringstraight-arm pointing, the arm assumed a similar orientation at a particulartarget irrespective of where it came from. The orientations were restrictedto a surface similar to that produced by a Fick gimbal with zero torsionalcomponent. The twist was always in the same direction, and always less thanthat for a Fick gimbal (ie the gimbal score was between 0 and -1).During pointing movements of the arm, Miller et al. (1992) and Theeuwenet al. (1993) also found a unique orientation of the arm for each pointingposition, with a curved rather than 
at plane.Liebermann (1998) claimed that Listing's law was applicable for the ori-entation of the hand, as the deviations from a 
at Listing's plane were small(1-2% of the available range). These deviations, he suggested, could be dueto noise inherent in the system and need to be considered taking into ac-count the desired accuracy of the task. These results are in contradiction tothe conclusions reached by Soechting et al. (1995), that Donders' law doesnot hold in general for arm movements. They suggest that the posture ofthe arm at the end point is dependent on the starting point, and that kine-matic factors alone could not predict the �nal posture of the arm. Insteadthey propose that a minimal work strategy could be used to predict the �nalorientation.Postural invariance of the arm when reaching towards a cylinder hasbeen found in several studies (Desmurget & Prablanc, 1997; Soechting &Flanders, 1993; Paulignan et al., 1997), and also for a small sphere (Greaet al., 2000). Posture is de�ned as a vector made up of the joint angles ofthe arm. Desmurget et al. (1998) noted that the posture of the end pointis varied systematically as a function of the movement starting point. It isimportant to note that the �ndings provide evidence that the �nal posture isplanned in advance, and not that there is a unique correspondence betweenan object location and posture (Grea et al., 2000).20



Recently, in Admiraal et al. (2002), it was found that the �t of rotationvectors to a surface is di�erent when the arm is stationary and when the armis moving, in that the scatter, or thickness, of the surface was found to beless when the arm is stationary compared to when it is moving.3.5 Double step paradigmThe double step target displacement paradigm (Georgopoulos et al., 1981;Soechting & Lacquaniti, 1983; Flash & Henis, 1991) is where a target isinitially set for the subject to move towards, then a certain time after pre-sentation of the �rst target, known as the inter-stimulus interval (ISI), thetarget jumps instantly to another location.In an analysis of eye saccades using the double-step paradigm, Minkenet al. (1993) found that the double-step paradigm sometimes produced stronglycurved saccades. Listing's law was obeyed equally well in these cases eventhough they are not single axis rotations (as are point to point saccades).Flash & Henis (1991) used the double-step paradigm to test a model oftrajectory generation for compliant arm movements in a horizontal plane.They found that the resultant trajectory plan could be modeled as the su-perposition of the original trajectory plan in extrinsic coordinates (beforethe perturbation) added to a second trajectory plan for a movement fromthe �rst to the second target location. This issue will be examined in moredetail in Chapter 5.
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Chapter 4Kinematic redundancystrategies
4.1 IntroductionThe aim of this experiment was to test Donders' law for the extended armduring a pointing task, and to test the goodness of �t of various surfaces tothe orientation of the arm under di�erent conditions.4.2 Methods4.2.1 Experimental setupThe subjects were required to point towards virtual balls, back projected ona screen (using a Barco Ltd projector). The virtual balls, generated by anOpenGL program running on a Silicon Graphics Octane workstation, wereproduced by means of di�erent images presented to the left and right eyes (at60Hz to each eye) using Crystal Eyes LCD stereo glasses which caused thesubject to perceive the balls to be in front of the screen. The experimentalsetup is shown in Figure 4.1.Throughout the experiments, data were collected by the placement of22
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Figure 4.1: Experimental setup14 infrared emitting diodes (IREDs), using the Northern Digital Optotraksystem, to determine the location and orientation of the arm. The wrist andthe forearm were considered as a single joint; this was forced on the subjectsby use of a wrist brace to prevent movements at the wrist. Exo-skeletonframes were used to measure the rotations and position of the joints, as usedin Liebermann (1998):� The shoulder was de�ned as the centroid of a 
at isosceles triangle,with its base �xed above the acromion, and positioned so that the baseis orthogonal to the screen.� The frame attached to the upper arm was rhomboidal, with its lowercorner placed on the axis of rotation of the elbow joint.� The forearm frame was also rhomboidal, but smaller, and attached tothe wrist, measuring the rotations of the combined wrist/hand joint,and the position of the wrist. 23



� Two markers were attached to the index �nger to provide the positionof the end of the arm.Redundant markers were used in order to have usable data when some mark-ers were not recorded by the Optotrak. Markers not recorded were sometimesrecovered using interpolation.The data were collected in the coordinate system of the Optotrak, thentransformed into a coordinate system relative to the screen. The data werecollected at 100Hz, and smoothed by a 6th order Butterwoth �lter. A pointin the middle of the left edge of the screen was de�ned as the origin. Thesubjects stood so that their parasaggital plane was perpendicular to thescreen, and the coordinate axes were de�ned so that the x axis points staightahead (into the screen), the y axis points horizontally to the left, and the zaxis points vertically upward (see Figure 2.1). A structure with markers wasplaced at the origin of this coordinate system, so that there was a marker atthe origin, and one at 15cm along each of the x, y and z axes. By recordingthe location of these markers in Optotrak coordinates for a period of tenseconds, a homogeneous transformation (Craig, 1986), represented as a 4 by4 matrix, between the two coordinate systems was determined using linearregression.As extended arm movements were considered, the objects were positionedto appear just beyond the �nger tip (so that the subject's arm would notinterfere with the perception of the target). The locations of the targets areshown in Figure 4.2.It is possible from the markers to determine 5 joint parameters that fullyde�ne the orientation and rotation of the arm, while here, as only extendedarm movements are being considered, only 4 parameters are being considered(see Figure 4.3). In addition, it is possible to calculate the location of theend e�ector in 3D space, and to generate rotation vectors for the arm (seesection 4.2.4).
24
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Figure 4.2: Locations of the targets. The central target r was positioned to bestraight ahead just beyond the �nger tip, at shoulder height. The locationof the other targets relative to this are shown in the diagram. Target wwas only used for subjects 1 and 2. The rotations are about a body �xedcoordinate system with its origin at the shoulder.4.2.2 Experimental protocolInitially, the subjects were presented with a random display of balls to pointat, to give them time to become familiar with operating in the environment.No measurements were taken during this time.The subjects were asked to point with the arm straight ahead at shoulderlevel. This was recorded by the Optotrak for 10 seconds, and used for theinitial reference position for generating rotation vectors.Two types of movements were presented. The �rst were point to point,where the subject began with the arm pointing at some point (A), then atthe start of the event the ball moved to a new location (B) to which thesubject then needed to point at. The second type of movements were doublestep movements. They began like the point to point movements, howeverafter the target in the new location has been presented (B), at some latertime, the target jumped to a third location (C), to which the subject neededto point at instead of the �rst target. The experiment was divided into four25
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Figure 4.3: Extended arm joint parameters - three are required to de�nethe orientation, treating the hand and forearm as one joint: azimuth(azi),elevation(ele), rotation (rot) of the upper arm, and pronation(pro) of theforearm (based on notation from Grea et al. (2000)). These joint anglescorrespond to those shown in the model of the arm in Figure 3.1.sets. Each set used two Inter Stimulus Intervals (ISI), de�ned as the timebetween the time the second (B) and third (C) targets were presented in thedouble step case. The ISI times used were 50ms & 300ms, 100ms & 400ms,150ms & 550ms and 200ms & 700ms. This broad range of ISI times, includingtimes shorter and longer than reaction time, were selected to investigate thedi�erent strategies depending on the time of switching.Within each of these four sets, the movements were divided into 4 blocks,with the movements in each block beginning at the same point. The move-ments considered are shown in Table 4.1.The single step (control) movements were selected so that for each doublestep movement, there would be a control movement corresponding to anunperturbed movement from the starting position to the �rst target, andanother control movement from the �rst target to the second target. Forexample, the double step movement r ! s ! v had the correspondingcontrol movements r ! s and s! v.26



Starting at r Starting at s Starting at t Starting at uDouble step r ! s! v s! t! u t! u! s u! s! vmovements r ! s! t(r ! t! u)(r ! t! w)Control (point r ! s s! t t! u u! sto point movements) (r ! t) s! v (t! w)Table 4.1: The movements performed in each trial, from the targets shownin Figure 4.2. Those in brackets were only performed for subjects 1 and 2Each block consisted of 100 movements - each control movement wasrepeated 10 times and each double step movement was repeated 5 times, foreach ISI. Between movements, there was a break of one second. A shortrest was given between each block, and a longer rest was given between sets.The order of presentation of movements with the same starting location wasrandomized so the subject would not be able to predict the next movement.4.2.3 Instructions to subjectThe following instructions were read to the subject at the beginning of theexperiment:� You are free to drop out of the experiment at any time without anyfurther explanation.� For all the experiments, please stand straight, and try not to rotateyour torso.� Each movement will begin with a white ball. When you see the whiteball, point towards the ball with your index �nger. As with all thepointing, the ball will be just beyond your �ngertip.27



� For each block of movements, the ball will begin at the same location,although this may be di�erent between blocks.� When the ball turns red, this means that the ball is about to move.� The ball will then turn green. You need to move your arm so that yourindex �nger points to the current location of the ball.� In some cases, the ball will then jump to a new location. If this occurs,you need to point to the ball at the new location.� You may rest your hand on the stand when the ball disappears.� There will be time to rest between blocks.4.2.4 Techniques of analysisThe rotation vectors need to be extracted from the 3D position data of themarkers. The rotation vectors considered here are those of the rotation of theupper arm, and the forearm segments. The rotations were initially calculatedrelative to the reference position de�ned at the beginning of each trial, whenthe subject pointed straight ahead at shoulder height for 10 seconds.A set of axes was de�ned based on the markers, shown in Figure 4.4, atthe reference position, and at each time step. The rotation matrix R (a 3 by3 matrix) that de�ned the rotation from the reference axes (A) to the axesat each time step (B) can be stated as:RA = B (4.1)and hence can be found by R = BA�1 (4.2)More general methods, using singular value decomposition (S�oderkvist &Wedin, 1993; Arun et al., 1987), were found to give the same results.28
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4Figure 4.4: A set of axes was de�ned based on the forearm markers. Thex-axis is de�ned as the unit vector in the direction from marker 4 to marker2. The y-axis is the unit vector in the direction from marker 3 to 1. Thez-axis (coming out of the page) was calculated by the cross product of the xand y-axes. A similar de�nition was used for the upper arm. The origin islocated at the intersection of the three axes.The rotation matrix R was then converted to a rotation vector usingequation (2.12).In order to �t the data to the various surfaces that have been suggested(i.e., those in Equations (3.1),(3.3),(3.7)), it is necessary �rst to ensure thatthe rotation vectors are in the appropriate frame of reference.In the eye, there is a reference position, known as the primary position,which is the unique position such that from this position, any other positioncan be reached by a rotation where the axis of rotation lies within Listing'splane. If this is the same as the reference position used for calculating rotationvectors, then in the eye, the torsion is always zero (i.e. rx = 0). It ispossible to recalculate the rotation vectors so they will be as if they camefrom the actual primary position, which will not necessarily be the same asthe reference position used in the experiments. The primary position will beorthogonal to the plane of rotation vectors.However, for second order surfaces there is no vector that is orthogonal29



to the plane (Gielen et al., 1997). If the second order terms are small, then�tting a 
at plane will give similar coe�cients to that for a second ordersurface. So the same transformation was applied for all the surfaces.These calculations were performed based on the description in Tweedet al. (1990). First, the plane needs to be shifted so that the reference positionwill lie in the plane. If the parameter a in equation (3.1) is not zero, thenthe reference position does not lie in the plane. However, the rotation vectore = ha 0 0i0 is in the same direction as the reference position h1 0 0i0,but will lie in the plane. So by rotating from this position rather thanthe reference position, the plane will pass through the origin. This can beachieved by composing the inverse of this vector with the rotation vectors, iethe rotation vector r becomes r � e�1 (e�1 is easily calculated as e�1 = �e =h�a 0 0i0).Next, the plane should be rotated so that it will have the property thatthe torsion is zero in the plane, i.e. rx = 0. This will enable Listing's law tobe easily seen. The normal vector to the recalculated plane will be given by
~Ve =

2664 1�b�c3775p1 + b2 + c2 (4.3)The rotation vector that then represents a rotation to the current represen-tation from one where the normal vector of the plane will point down the xaxis (ie so the rotation vectors in the plane will have zero torsion) can beobtained by performing the Cli�ord product (Tweed et al., 1990):p = � ~Ve �~i~Ve �~i (4.4)where ~i is a vector point in the direction of the x axis. So composing arotation vector r with the inverse of the vector p will give the rotation p�1�r.The plane will now be equivalent to the Y-Z plane.By �tting a surface after these rotations it should be possible to see if itis better modeled by a 
at plane, or a twisted surface. In terms of equation30



(3.3), h can be considered as the twist score if it is not a 
at plane. Therotation vectors were �t, after rotation, in a least squares sense to the 3surfaces - a 
at plane (3.1), a second order surface (3.3) and gimbal-likesurface (3.7).For the sake of comparison, the surfaces were �t to stationary points andnon-stationary points. Additionally, to test if Donders' law applies di�erentlyduring single step and double step movements, the �t of the surface wascompared for both cases.The \thickness" of the surfaces will be calculated to give a sense of howgood a �t the surface is. This is de�ned here as the standard deviation ofthe distance from the plane in the torsional (rx) direction (Tweed & Vilis,1990a).Additionally, the variation of torsion (rx) was compared to the variationin the other components of the rotation vectors (ry and rz).4.3 ResultsIn the range of rotations being considered in this study, there is an approxi-mately linear relationship between the rotation vector and the angle (becausetan(�) � � for small angles), so for ease of understanding, the axes will bemarked in degrees.4.3.1 Variation at movement endpointsThe variation of the rotation vectors at the movement endpoints were com-pared. Figures 4.5 and 4.6 show the range of rotation vectors of the forearmand the upper arm for subject 1. For both the forearm and the upper arm,the left column shows a ball around the target location - the spread of val-ues in the ry and rz components is approximately equal - these are probablyerrors in locating and pointing to the target.However, in the other two columns, an elliptical shape can be seen, withthe major axis of the ellipse roughly parallel with the rx axis. This shows31
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Figure 4.5: End point spread of forearm rotation vectors for Subject 1. Bluedenotes movements starting at a particular point. Green denotes doublestep movements and red denotes control movements that end at a particularpoint. 32
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Figure 4.6: End point spread of upper arm rotation vectors for subject 1.Blue denotes movements starting at a particular point. Green denotes doublestep movements and red denotes control movements that end at a particularpoint. 33



that there is much greater variation in the rx component than the othertwo components. The variation in the torsion at the start of the movements(shown in blue) is less than the variation at the end of the movements.The reason why the major axis of the ellipse is not parallel to the torsionalaxis is because of the de�nition of the coordinate axes. The rx component isthe rotation relative to a space-�xed axis, and not to a limb �xed axis. Thisis known as the problem of \false torsion" (Haslwanter, 1995).The major axis of the ellipse covering the points is shorter for upper armmovements, indicating less variation in the torsion. For some subjects, forexample for subject 3, the di�erence in variation between the components isnegligible for rotation vectors of the upper arm. The distribution of rotationvectors at a point for this subject is approximately circular. This can be seenin Figure 4.7.Graphs for the other subjects can be found in Appendix C.To summarize the results of the variation at the end points, the standarddeviation in the rx, ry and rz components was calculated for movementsending at each end point. The results for the forearm and upper arm arepresented in Figures 4.8 and 4.9 respectively.If the torsional component (rx) is planned to a similar degree of accuracy,it would be expected that the variations in rx at the endpoints would be thesame as those found in ry and rz.For the forearm, the variation in the torsional component (rx) can be seento be signi�cantly larger than the other components (this was con�rmed by at-test at the 0.2 level compared to one of the other components in 73% of thecases.) A similar result was found for the upper arm, although for some sets,such as the one shown in Figure 4.7 the variation between the componentsis very similar.
34
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Figure 4.7: End point spread of upper arm rotation vectors for subject 3.Blue denotes movements starting at a particular point. Green denotes doublestep movements and red denotes control movements that end at a particularpoint. 35
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Figure 4.8: End point variation of rotation vectors of the forearm in compo-nents for the subjects 1-5. The letters (r,s,etc) indicate the target position(see Figure 4.2). The bars show the mean of the standard deviation of eachcomponent of the rotation vector at each endpoint, while the error bars showit's standard deviation. The left column is for single step movements, theright column for double step movements. It is clearly seen that the variationin rx (in red) is greater than that in ry and rz.
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Figure 4.9: End point variation of rotation vectors of the upper arm in com-ponents for the subjects 1-5. The letters (r,s,etc) indicate the target position(see Figure 4.2). The bars show the mean of the standard deviation of eachcomponent of the rotation vector at each endpoint, while the error bars showit's standard deviation. The left column is for single step movements, theright column for double step movements. Unlike the forearm rotations, thevariation is not very di�erent between the components.
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4.3.2 E�ect of considering orientation relative to start-ing pointIn Hore et al. (1992), it was mentioned that the constraints on orientationwere not dependent on the starting orientation of the hand. With a Fickgimbal rule, the orientation of the hand with respect to the horizon remainsconstant. They observed that when subjects were told to begin with di�erentstarting orientations, this orientation (with respect to the horizon) was �xed.As no explicit instructions were given to the subjects about starting ori-entations, di�erent starting orientations could be seen for the same startingpoint. In order to remove this e�ect each movement was considered as arotation from its starting point. To allow movements starting from di�erentstarting points to be compared together, the rotation vectors for movementsfrom a particular starting point were composed with the average startingorientation at that starting point.To test whether this improved the �t to the surfaces, the thickness ofa second order surface was compared, for movements considered relative totheir starting points, and those unchanged. The results of this can be seenin Table 4.2.From the table, for most movements, a slight improvement can be seenin using the modi�ed method, although for some movements method 1 isequally as good or better. The values of thickness of the �tted surfaces forthe forearm for all subjects were signi�cantly better (t-test at 0.15 signi�cancelevel) using Method 1, although this was not seen for the upper arm (thismay be due to the larger values of thickness observed for the forearm).Hence, this operation will be performed for the rest of the results, in orderto remove the e�ect of the starting con�guration. While the e�ect of thisoperation is small when �tting a surface to the rotation vectors from manymovements, when considering the behaviour of individual trajectories (as isperformed in Chapter 6), this operation can have a signi�cant e�ect on theresults. 38



Forearm Upper armSubject 1 2 3 4 5 1 2 3 4 5Set 1:Method 1 3:53� 3:43� 5:70� 3:86� 8:91� 3:31� 1:85� 3:15� 1:69� 6:28�Method 2 3:40� 3:46� 3:90� 2:97� 7:99� 3:60� 1:84� 2:46� 1:66� 5:47�Set 2:Method 1 3:32� 3:66� 3:39� 4:04� 6:80� 2:46� 2:17� 2:11� 2:50� 5:45�Method 2 3:12� 3:71� 3:36� 4:14� 5:53� 2:70� 2:23� 2:14� 2:48� 4:54�Set 3:Method 1 5:64� 4:22� 3:78� 4:58� 4:72� 3:36� 2:69� 2:22� 2:70� 4:29�Method 2 4:30� 4:01� 3:51� 3:70� 4:82� 3:12� 2:61� 2:27� 2:14� 4:33�Set 4:Method 1 2:84� 3:84� 3:51� 5:50� 5:92� 2:63� 2:76� 2:30� 2:35� 4:88�Method 2 2:83� 3:80� 3:32� 4:82� 4:75� 2:61� 2:77� 2:24� 2:20� 4:88�Table 4.2: Thickness of second order surfaces for subjects 1-5, Sets 1-4 forforearm and upper arm movements. Method 1 �ts the rotation vectors rel-ative to the reference position. Method 2 �rst �nds the rotation vectorsrelative to the start of the movement, then this is composed with the averagestarting position for rotation vectors from this point.4.3.3 Distribution of rotation vectors throughout theworkspaceThe rotation vectors of the forearm and upper arm, for two representativecases are shown. Figure 4.10 is a case with a (relatively) small range of of rxvalues, while Figure 4.11 has a large range of rx values.The workspace was also divided to see whether a better �t to the surfaceswould apply for smaller regions. The workspace was trisected in both the ryand rz components, to give nine subspaces. This is shown visually for theside and top view for forearm and upper arm rotations in Figure 4.12 and4.13. Figure 4.12 shows that the variation in rx is greater than that of theother components, while in Figure 4.13, for the upper arm, the variation inthe components is more similar. The variation in torsion is less when dividedup in this way. This will be quanti�ed in the following section.39
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Figure 4.10: Rotation vectors for the forearm and upper arm during 100 3Dsingle step and double step movements at each time step for Subject 2, Set1. The range of rx values is relatively small.
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Figure 4.11: Rotation vectors for the forearm and upper arm during 100 3Dsingle step and double step movements at each time step for Subject 5, Set2. A large range of rx values can be seen.40
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Figure 4.12: Rotation vectors for the forearm and upper arm divided into 9 smaller workspaces, for subject 1, set 3.F indicates forearm rotations, and U upper arm rotations.
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Figure 4.13: Rotation vectors for the forearm and upper arm divided into 9 smaller workspaces, for subject2, set 4.F indicates forearm rotations, and U upper arm rotations.
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4.3.4 Constraints on rotation vectorsThree di�erent constraints have been suggested for constraining orientationsin rotation vector space. These constraints are expressed in the form ofa surface of permissible rotation vectors. The three surfaces are the 
atListing's plane, a second order surface, and a gimbal-like surface.To test which of these surfaces provides the best description of the con-straint on the rotation vectors during these movements, the best �t of thesesurfaces was found for the data in a least-squares sense. To examine howgood these surfaces are as a description of the constraints, the goodness ofthe �t (measured by the thickness of the surface), and the consistency of theparameters will be examined.Typical examples of these �ts can be seen graphically in Figures 4.14 and4.15. The rotation vectors are plotted together with the surfaces.Due to the operations involved in making the orientations relative to thereference position, the representation of the orientations in rotation vectorspace are evenly distributed about the 
at surface. In this sense, the 
atplane provides a good average description of the rotations vectors found.The second order surfaces seen are curved, with a small amount of twist.The fact that a curved surface was the best �t second order surface (ratherthan a 
at plane, which would be produced if the last 3 coe�cients werezero in equation (3.3)) means that a curved surface is a better �t than a 
atplane.The gimbal-like surface appears very similar to a 
at plane - very littletwist is seen. This means that the best gimbal-like surface that could be �tis very similar to a 
at plane.The parameters of the second order surfaces and the gimbal score for eachsubject and set that were calculated are displayed in Tables 4.3 and 4.4. Theparameters for the 
at plane are not displayed because the rotation vectorswere rotated in order that equation (3.2) would hold.For the forearm, while the twist score (h) is mostly negative, there areseveral examples of where large positive values are found, indicating a twist43
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Figure 4.14: Rotation vectors for Subject 2, set 4 for the forearm and theupper arm. Also shown are the best �t plane, second order surface, andgimbal-like surface.
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Figure 4.15: Rotation vectors for Subject 3, set 3 for the forearm and theupper arm. Also shown are the best �t plane, second order surface, andgimbal-like surface.
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Set d e f g h j sSubject 11 -0.008447 -0.009289 -0.052489 0.338877 -0.381586 0.415326 -0.1453702 -0.017528 0.056516 0.096816 0.418025 -0.289868 -0.159763 -0.0353803 -0.038689 0.173062 0.182283 2.780967 -0.470340 -0.633707 -0.0626144 -0.004798 -0.059253 -0.053044 0.579002 0.169736 0.084269 0.064056Subject 21 0.003649 0.026955 0.030033 -0.096081 -0.242675 -0.144035 -0.1926752 0.001115 -0.025864 0.037140 0.482575 -0.011960 -0.339512 -0.1503353 -0.000611 -0.134718 -0.053014 1.489031 0.205208 -0.675133 -0.1569434 -0.010089 -0.120091 0.051304 2.957662 0.908857 -1.124890 0.069704Subject 31 -0.385066 -0.289486 -1.470391 0.638212 -1.307160 -1.199910 0.0025122 -0.086934 -0.837847 0.040417 -1.592400 -1.309902 1.051888 -0.0792953 -0.026528 -0.700597 0.218490 -2.472881 -0.232724 1.225703 -0.0033944 0.010540 -0.284482 0.489194 -1.407343 0.417429 1.689425 -0.009640Subject 41 0.008858 0.097937 0.043550 0.325320 -0.315618 -0.486323 -0.2415632 0.001949 0.055227 0.012567 0.305771 -0.377662 -0.190073 -0.4050733 -0.072070 -0.230205 0.384982 -0.380306 -0.254365 -0.660939 -0.1560804 0.075517 0.390192 0.072054 0.574984 -0.434181 -1.365278 -0.254946Subject 51 0.029966 0.369797 -0.130575 1.515359 -0.098192 -1.132542 0.0632042 0.017395 0.205631 0.130691 1.890623 1.165214 -1.352499 0.5686753 0.041681 0.562959 -0.074129 1.746618 0.461363 -0.819242 0.0961264 0.016782 0.313448 -0.089161 1.072558 -0.041693 -0.376280 0.091691Table 4.3: Parameters of second order (d-j) and gimbal (s) surface �t to datafor the forearm.
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Set d e f g h j sSubject 11 0.009701 0.134921 -0.150501 0.058824 -0.488272 0.337278 -0.0610262 -0.034733 0.106341 0.196376 0.158002 -0.218414 -0.265220 -0.0051033 0.001801 0.137074 0.001273 0.451447 -0.094167 -0.023114 0.0080894 0.008347 -0.009145 -0.066692 -0.018922 0.071518 0.129513 0.032944Subject 21 -0.006850 0.087362 0.033371 0.139463 -0.481659 0.015245 -0.0559542 -0.008661 0.063494 0.113327 -0.033919 -0.268843 -0.244151 -0.0584343 -0.002492 0.044825 0.018801 0.039020 -0.408998 0.049321 -0.0788824 -0.006242 -0.032182 0.048630 0.752270 -0.050517 -0.224167 -0.016369Subject 31 0.032123 0.354690 -0.184329 0.885276 -0.631129 0.235993 -0.0302952 0.005716 0.076273 -0.006604 0.194386 -0.029035 0.017630 -0.0050763 -0.002324 -0.129976 -0.038205 -0.797609 -0.426739 0.161868 -0.1163774 -0.010221 -0.158729 -0.283794 -0.251591 -1.571283 -1.364667 -0.079147Subject 41 -0.030892 0.131467 0.294263 0.035608 -0.315464 -0.528033 -0.0030592 0.001702 0.118376 0.106802 -0.089193 -0.536752 -0.401124 -0.0012963 -0.035879 -0.410186 -0.129715 -0.926266 -0.725549 -0.237182 0.0054024 0.000849 0.065549 0.079768 0.201168 0.364677 0.113212 0.000723Subject 51 0.017581 0.370465 0.350302 0.725894 -1.411697 -2.162019 -0.3923722 -0.018909 0.204400 0.486142 -0.283048 -0.699817 -1.745229 -0.1143503 0.011930 -0.070443 -0.101643 -0.689038 -0.992718 -1.076557 -0.5530704 0.007838 0.023538 -0.286287 -1.236442 -0.316863 -1.523820 -0.351649Table 4.4: Parameters of second order (d-j) and gimbal (s) surface �t to datafor the upper arm.
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in the opposite direction (for example, Subject 2, Set 4 and Subject 5, Set2). The magnitude of the values is considerably smaller than those found byHore et al. (1992), who found values of the twist score ranging from -0.61to -1.10. The twist scores are not very consistent across subjects and evenbetween sets.The �rst three parameters (d,e and f) are generally close to zero - this isbecause these parameters will be �t to a 
at plane (which in this case willbe rx = 0) if the other parameters are small. The parameters g and j referto the curvature of the surface. Although there are a wide range of valuesfor these parameters, for many of the subjects they are similar to the extentthat they are of the same sign and order of magnitude.A similar phenomenon is seen with the gimbal score for the forearm -while most of the values are negative, indicating that the gimbal is twistedin the direction of a Fick gimbal (see Figure 4.18), albeit by a small amount,there are several positive values. The gimbal scores for Subject 5 are allpositive. This suggests that for the forearm, a di�erent strategy is used bythis subject compared to the other subjects.The upper arm shows more consistency in the results, with the twist scorefor most of the sets negative. The gimbal score is also generally negative,although its magnitude is very close to zero (apart from subject 5). Thesmall values for the Gimbal score suggest that, at least for the range beingconsidered here, a gimbal-like surface does not provide a better model forspecifying the orientation of the upper arm or forearm than a 
at plane(which has a gimbal score of zero).To show graphically the second order and gimbal-like surfaces, the sideviews were plotted for each subject and set, without the rotation vectors(for clarity). This is shown for the forearm (Figure 4.16) and the upper arm(Figure 4.17).The goodness of the �t to the planes are compared by considering the\thickness" - the standard deviation of the distance from the plane. Theseresults are summarized for forearm and upper arm movements in Tables 4.548
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Figure 4.16: Sideviews of the �ttedplanes for the sub-jects 1-5 for fore-arm movements, foreach set. The sec-ond order curves arethe best �t to (3.3),while the gimbal-likeare the best �t to(3.7). The curved na-ture of the second or-der surfaces can beseen, and within sub-jects, similar shapedsurfaces are found,although they dif-fer between subjects.The gimbal-like sur-faces show very lit-tle twist, althoughthe surfaces of Sub-ject 4, which have thelargest twist, all twistin the same direction
49



Subject 1

Set 1

ORDER
SECOND

Subject 2 Subject 3 Subject 4 Subject 5

Set 2

Set 3

Set 4

Set 1

LIKE
GIMBAL

Set 2

Set 3

Set 4

Figure 4.17: Sideviews of the �ttedplanes for the sub-jects 1-5 for upperarm movements, foreach set. The secondorder curves are thebest �t to (3.3), whilethe gimbal-like arethe best �t to (3.7).The second ordersurfaces are curvedto some extent, anda similar amount oftwist can be seen inmany of the surfaces.The twist of thegimbal-like surfacesis generally negligi-ble - only Subject5 shows a smallamount of twist, allof which is in thesame direction.
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Subject 1 2 3 4 5Set 1:Flat plane whole WS 3:58� 3:54� 4:06� 3:28� 8:11�divided WS 2:79� 2:87� 3:28� 2:66� 5:94�Second order whole WS 3:40� 3:46� 3:90� 2:97� 7:99�divided WS 2:43� 2:65� 3:09� 2:61� 5:59�Gimbal whole WS 3:58� 3:50� 4:08� 3:05� 8:20�divided WS 2:98� 3:21� 3:67� 2:88� 7:23�Set 2:Flat plane whole WS 3:17� 3:81� 4:06� 4:48� 6:06�divided WS 2:42� 3:14� 3:13� 3:74� 4:92�Second order whole WS 3:12� 3:71� 3:36� 4:14� 5:53�divided WS 2:31� 2:88� 2:89� 3:46� 4:37�Gimbal whole WS 3:21� 3:77� 4:05� 4:20� 6:24�divided WS 3:00� 3:51� 3:58� 4:00� 5:82�Set 3:Flat plane whole WS 4:48� 4:06� 3:82� 3:85� 5:01�divided WS 3:09� 3:22� 3:04� 3:45� 3:74�Second order whole WS 4:30� 4:01� 3:51� 3:70� 4:82�divided WS 2:90� 3:08� 2:80� 3:20� 3:41�Gimbal whole WS 4:48� 4:07� 4:01� 3:93� 5:38�divided WS 3:61� 3:66� 3:71� 3:67� 4:82�Set 4:Flat plane whole WS 2:95� 4:06� 3:59� 5:09� 4:86�divided WS 2:40� 3:06� 2:88� 3:58� 4:14�Second order whole WS 2:83� 3:80� 3:32� 4:82� 4:75�divided WS 2:19� 2:98� 2:72� 3:34� 3:92�Gimbal whole WS 2:94� 4:12� 3:69� 5:27� 4:94�divided WS 2:80� 3:50� 3:33� 4:54� 4:58�Table 4.5: Summary of thickness of di�erent surfaces for forearm movements.The values represent the standard deviation of the distance from the surfacein the rx component. A comparison is made between the whole workspace,and the weighted average when divided into 9 equally sized (in ry and rz)bins.and 4.6.From these tables, it can be seen that the thickness for the 
at planes(see Figure 4.7) was signi�cantly greater than that found in Liebermann(1998) (mean 1:56�), while of a similar magnitude to that found in Hore51



Subject 1 2 3 4 5Set 1:Flat plane whole WS 3:93� 1:99� 2:49� 1:94� 5:76�divided WS 3:10� 1:53� 2:08� 1:41� 4:33�Second order whole WS 3:60� 1:84� 2:46� 1:66� 5:47�divided WS 2:80� 1:47� 1:96� 1:31� 3:82�Gimbal whole WS 3:87� 1:95� 2:52� 2:33� 5:75�divided WS 3:38� 1:77� 2:24� 1:71� 5:41�Set 2:Flat plane whole WS 2:78� 2:37� 2:16� 2:77� 4:82�divided WS 2:12� 1:96� 1:93� 2:29� 3:48�Second order whole WS 2:70� 2:23� 2:14� 2:48� 4:54�divided WS 1:87� 1:82� 1:83� 2:18� 3:27�Gimbal whole WS 2:87� 2:37� 2:26� 4:12� 5:40�divided WS 2:70� 2:21� 2:05� 3:52� 4:52�Set 3:Flat plane whole WS 3:23� 2:65� 2:29� 2:44� 4:50�divided WS 2:25� 2:37� 2:05� 1:92� 3:44�Second order whole WS 3:12� 2:61� 2:27� 2:14� 4:33�divided WS 2:11� 2:23� 1:86� 1:79� 3:19�Gimbal whole WS 3:25� 2:63� 2:36� 2:77� 4:97�divided WS 2:55� 2:50� 2:19� 2:33� 4:12�Set 4:Flat plane whole WS 2:66� 2:80� 2:29� 2:25� 5:20�divided WS 2:18� 2:60� 2:01� 1:90� 3:74�Second order whole WS 2:61� 2:77� 2:24� 2:20� 4:88�divided WS 2:00� 2:36� 1:87� 1:75� 3:40�Gimbal whole WS 2:66� 2:81� 2:38� 2:57� 5:61�divided WS 2:41� 2:69� 2:16� 2:27� 5:18�Table 4.6: Summary of thickness of di�erent surfaces for upper arm move-ments. The values represent the standard deviation of the distance fromthe surface in the rx component. A comparison is made between the wholeworkspace, and the weighted average when divided into 9 equally sized (inry and rz) bins.
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et al. (1992). There was a small improvement for each subject for the �tto a second order surface (however, the �t to such a second order surfacewill never be worse than that to a 
at plane). The lack of improvementfor a second order �t may have been due to the magnitude of the rotations.Straumann et al. (1991) found that over a range of �25�, a 
at plane (ratherthan a second order surface) constrained the rotation vectors of upper armmovements. Hore et al. (1992) found that over a range of �30�, the regionof the twisted surface that is relevant is approximated well by a 
at plane.This is similar to the range of orientations used in this experiment. Thiscould explain why the twist may only have been noticeable if the range ofrotations was larger.The second order surfaces that were �tted generally had the same generalshape (see Figure 4.16 and 4.17), due to similarity in the values of the cur-vature (g and j) and the twist (h) for each subject, although signi�cant vari-ation is seen between sets. Furthermore, variation is seen between subjects.For the forearm, the surfaces �t to the movements of subject 4 showed theclosest �t to a Fick gimbal, and for the upper arm subject 5 showed surfaceswith a small gimbal score. In general, however, the amount of twist shownwhen �t to a Fick gimbal was negligible, although it was usually twisted inthe direction of a Fick gimbal (see Figure 4.18).These results suggest that it is possible that a Fick gimbal strategy maybe used for a larger range of rotations, but do not provide su�cient evidence.The lack of evidence may be attributed to the reasons mentioned above.The lack of signi�cant improvement in the thickness for a second order orgimbal surface rather than a 
at plane, combined with the lack of consistencyin the parameters leads to the conclusion that in general a 
at plane is thebest surface to use as a constraint on torsion.The �t for the divided workspace was better than that for the entireworkspace. When considering the second order surfaces, using a dividedworkspace gave a signi�cantly better �t for all subjects (t-test at 0.2 signi�-cance level). This implies that by using local rules for the constraint of arm53
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Figure 4.18: An example of a gimbal-like surface, where the twist is in thedirection of a Fick gimbal (ie the gim-bal score is negative). The upper leftand lower right corner have positivetorsion, while the other two cornershave negative torsion. (The coloursare an aid for judging the depth andhave no additional meaning.)orientations rather than a global rule, a better model for constraining theorientations can be found.A summary of the thickness of the �t to a second order surface under arange of conditions can be found for the forearm (Table 4.7) and the upperarm (Table 4.8).A comparison was made between the thickness of the plane if only sta-tionary orientations are considered (i.e. those at the start and end points),and the thickness of the plane when the orientation at each time step isconsidered. These results can be found in Tables 4.7 and 4.8.For a second order plane, for the forearm, the thickness of the plane forstationary movements was on average 14.3% less than that for all movements,while for the upper arm it was 19.0% less for stationary compared to allmovements. These �ndings are similar to the results found in Admiraal et al.(2002) (they found a 9.5% improvement for the orientation of the upper arm).The t-test showed that the di�erence is signi�cant for 3 of the 5 subjects atthe 0.2 level for the forearm, and for all subjects (at the 0.2 level) for theupper arm. 54



Subject 1 2 3 4 5Set 1:All points whole WS 3:40� 3:46� 3:90� 2:97� 7:99�divided WS 2:43� 2:65� 3:09� 2:61� 5:59�Stationary whole WS 2:84� 2:89� 3:82� 2:41� 7:57�divided WS 1:03� 1:28� 1:97� 1:84� 3:12�Single step whole WS 2:95� 2:91� 4:20� 2:03� 8:68�divided WS 1:71� 1:84� 2:35� 1:66� 4:59�Double step whole WS 3:25� 3:85� 3:52� 3:58� 6:56�divided WS 2:47� 2:64� 2:73� 2:98� 4:51�Set 2:All points whole WS 3:12� 3:71� 3:36� 4:14� 5:53�divided WS 2:31� 2:88� 2:89� 3:46� 4:37�Stationary whole WS 2:49� 3:03� 2:94� 3:59� 4:75�divided WS 1:24� 1:56� 2:30� 2:47� 2:32�Single step whole WS 2:80� 3:30� 3:32� 3:72� 5:33�divided WS 1:88� 2:13� 2:42� 2:58� 2:73�Double step whole WS 3:32� 3:64� 3:54� 4:53� 5:59�divided WS 2:36� 3:02� 2:82� 3:52� 3:81�Set 3:All points whole WS 4:30� 4:01� 3:51� 3:70� 4:82�divided WS 2:90� 3:08� 2:80� 3:20� 3:41�Stationary whole WS 3:93� 3:57� 3:43� 3:32� 4:16�divided WS 1:62� 1:94� 2:16� 2:62� 1:76�Single step whole WS 3:58� 3:43� 3:12� 3:04� 4:36�divided WS 2:64� 1:99� 2:40� 2:62� 2:50�Double step whole WS 3:51� 3:97� 3:61� 3:89� 5:15�divided WS 2:33� 3:20� 2:85� 3:33� 3:46�Set 4:All points whole WS 2:83� 3:80� 3:32� 4:82� 4:75�divided WS 2:19� 2:98� 2:72� 3:34� 3:92�Stationary whole WS 2:18� 3:48� 3:02� 3:49� 3:74�divided WS 1:06� 2:22� 2:30� 1:94� 2:19�Single step whole WS 2:47� 3:20� 2:52� 3:98� 3:98�divided WS 1:65� 2:13� 1:81� 2:52� 2:79�Double step whole WS 2:85� 4:18� 3:70� 5:40� 5:21�divided WS 2:21� 3:22� 2:92� 3:50� 4:17�Table 4.7: Summary of thickness of second order surfaces for forearm move-ments. The values represent the standard deviation of the distance fromthe surface in the rx component. A comparison is made between the wholeworkspace, and the weighted average when divided into 9 equally sized (inry and rz) bins. 55



Subject 1 2 3 4 5Set 1:All points whole WS 3:60� 1:84� 2:46� 1:66� 5:47�divided WS 2:80� 1:47� 1:96� 1:31� 3:82�Stationary whole WS 2:83� 1:49� 1:89� 1:23� 4:40�divided WS 1:25� 0:71� 0:95� 0:76� 1:02�Single step whole WS 2:92� 1:64� 2:13� 1:47� 5:47�divided WS 2:05� 1:17� 1:55� 0:97� 2:87�Double step whole WS 3:66� 1:95� 2:61� 1:70� 5:07�divided WS 2:81� 1:43� 1:97� 1:34� 3:64�Set 2:All points whole WS 2:70� 2:23� 2:14� 2:48� 4:54�divided WS 1:87� 1:82� 1:83� 2:18� 3:27�Stationary whole WS 2:04� 1:83� 1:67� 2:11� 3:06�divided WS 0:74� 1:16� 1:35� 1:71� 1:35�Single step whole WS 2:03� 2:12� 1:80� 2:20� 4:00�divided WS 1:32� 1:62� 1:52� 1:95� 2:00�Double step whole WS 3:01� 2:22� 2:48� 2:57� 4:54�divided WS 2:00� 1:75� 1:94� 2:01� 2:99�Set 3:All points whole WS 3:12� 2:61� 2:27� 2:14� 4:33�divided WS 2:11� 2:23� 1:86� 1:79� 3:19�Stationary whole WS 2:31� 2:24� 1:82� 1:84� 3:14�divided WS 0:91� 1:45� 1:26� 1:51� 1:19�Single step whole WS 2:48� 2:30� 1:98� 1:89� 4:42�divided WS 1:78� 1:66� 1:54� 1:51� 2:77�Double step whole WS 3:20� 2:61� 2:39� 2:35� 3:73�divided WS 2:08� 2:17� 1:85� 1:90� 3:08�Set 4:All points whole WS 2:61� 2:77� 2:24� 2:20� 4:88�divided WS 2:00� 2:36� 1:87� 1:75� 3:40�Stationary whole WS 2:12� 2:50� 2:02� 1:95� 3:97�divided WS 1:11� 1:70� 1:48� 1:44� 1:34�Single step whole WS 2:14� 2:47� 1:88� 1:95� 5:07�divided WS 1:45� 1:97� 1:58� 1:42� 2:91�Double step whole WS 2:65� 2:98� 2:45� 2:43� 3:87�divided WS 1:97� 2:50� 1:97� 1:88� 2:97�Table 4.8: Summary of thickness of second order surfaces for upper armmovements. The values represent the standard deviation of the distancefrom the surface in the rx component. A comparison is made between thewhole workspace, and the weighted average when divided into 9 equally sized(in ry and rz) bins. 56



There was no signi�cant di�erence in the thickness of the surfaces fororientations that were part of point to point trajectories compared to thosethat were part of double step movements. This can also be seen from theresults in Tables 4.7 and 4.8. In some cases, the single step movementswere better, while in others, the double step movements were better. These�ndings are similar to those of Minken et al. (1993), where it was foundthat highly curved eye movements produced as a result of the double stepparadigm obeyed Listing's law equally as well as point to point movements.The �t to the surfaces of rotation vectors for the upper arm was signi�-cantly better than for the forearm (by a t-test on the thickness of second-ordersurfaces at the 0.2 level). This suggests that upper arm movements are moreconstrained than forearm movements.4.4 DiscussionIn the results it has been shown that a surface can be �t to the rotationvectors for the forearm and upper arm during extended arm movements,and hence that a form of Donders' law is valid for such movements. A 
atsurface is a reasonable approximation to this surface, similar to results foundfor movements of the eye in a head �xed system (Tweed & Vilis, 1990b) andother studies of the extended arm (Liebermann, 1998). The thickness foundfor the surfaces, however, is larger than those found for the eye.The thickness of the surfaces makes it di�cult to di�erentiate furtherbetween the di�erent models. A slightly better �t is achieved by using asecond order surface, although the second order surfaces found were notconsistent between sets and subjects. A signi�cant improvement in the �t isalso possible by considering the surfaces when the workspace is divided.The results also seem to suggest that if considered over a larger workspace,the �t may be better to the rotation vectors reachable using a Fick gimbalwith zero Fick torsional angle ( F = 0), similar to the �ndings in Hore et al.(1992). Experiments over a larger range of orientations would be necessary57



to conclusively test this prediction. Such a system has the property that thewrist orientation with respect to the horizon, and with respect to the lineof sight, remains constant. The absence of this �nding in this experimentcould also be due to the recording equipment or paradigm used, which mayencourage such behaviour.It was found that stationary orientations have less scatter from the Don-ders' surface than the orientations during the movement. In Admiraal et al.(2002), it is suggested that this may be due to errors in executing the motionplan because of di�culties in predicting the complex biomechanical proper-ties of the arm, or because of di�ering delays from the central nervous systemto di�erent muscles.In contrast, no signi�cant di�erence was seen between single and doublestep movements. Linear superposition of the two control trajectories (inrotation vector space) would, in general, produce values of torsion di�erentto those for a single step movement. As there is no di�erence seen, thissuggests that superposition does not take place on the torsional componentof the rotation vector, rather it is calculated in some other way. This issuewill be further explored in Chapter 6.The thicknesses of the surfaces are considerably larger than those foundfor eye movements. Examination of the variation in end point rotation vec-tors also showed that, in general, the torsional component contains morevariation than the other components. These �ndings suggest that the tor-sional component is planned to a lesser degree than the other components.In Soechting et al. (1995) it is claimed that Donders' law does not hold,but rather a minimum work strategy is employed. The work involved inproducing torsional rotations is much smaller than that of rotations aboutthe other axes. It is seen here that the thicknesses of the surfaces for theupper arm are less than those of the forearm. Rotations of the upper armrequire more energy than the forearm, and hence this property may be aresult of some sort of minimum work strategy.Additionally, if the other components of the rotation were planned in or-58



der to minimize work, and the torsion was just a byproduct of the generationof the other components, larger variation in the torsional component thanthe other components would have only a small e�ect on the minimum workprinciple. In this sense, the torsion would be less controlled than the othervariables.
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Chapter 5Background on models ofmotor controlThe planning of pointing movements in the brain can be modeled by aninternal model - a set of theoretical computations that predict the motorcommands necessary to perform a given motor event (Sabes, 2000). Thischapter presents di�erent models for the generation of pointing movementsand saccades, examining their feasibility for use with extended arm pointingmovements.Point to point movements have been found to be repeatable and largelyinvariant in task space (Morasso, 1981; Flash & Hogan, 1985; Wolpert et al.,1995). A similar invariance in rotation vector or quaternion space has beenseen in studies of head �xed eye saccades. The angular velocity of thesemovements show relatively little scatter for normal point to point saccades(Van Opstal, 2001). This repeatability suggests that some sort of model isused in the brain to generate these movements. A number of models and theirimplications for the subsequent generated trajectories will be presented.
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5.1 Double step movements and the super-position strategyThe double step paradigm (Flash & Henis, 1991) can be used as a techniquefor testing di�erent internal models. Models that may give satisfactory pre-dictions for point to point movements will not necessarily provide accuratepredictions when there is a change of plan mid-
ight.Flash & Henis (1991) found that the trajectory plan of double step move-ments in a plane could be modeled as the vectorial addition of the originaltrajectory plan (from the starting location to the �rst target) and a secondtrajectory plan (for the displacement from the �rst to the second target).The trajectory plans that are added consist of bell-shaped velocity pro-�les. Similar velocity pro�les were seen in a study of infant reaching move-ments (Von Hofsten, 1991). Here the movements consisted of a combinationof \action units", made up of acceleration and deceleration phases, while thepath of each unit is fairly straight. As the infants grew older, the numberof units decreased and they became straighter. This combination of actionunits is similar to the superposition of trajectory plans.The tangential velocity while tracking moving targets can be modeledas the superposition of trajectory plans with bell-shaped tangential velocitypro�les (Lee et al., 1997). This is based on the concept that a complex tra-jectory may be formed by the linear superposition of simple sub-movements.The superposition strategy has also been considered for trajectory mod-i�cation with robot manipulators (Gat-Falik & Flash, 1999). The bene�t ofthis strategy is that it guarantees continuity in end e�ector / hand positionand the �rst derivative with respect to time, without requiring knowledge ofthe hand position, velocity or acceleration at the time of the switch. Theelementary units can also be planned independently in parallel, a strategythat can be implemented for use in robotics (Rogozin et al., 2001).
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5.2 Abort-replan modelThe abort-replan model (for example, in Ho� (1994)) is an alternative strat-egy for handling double step movements. It is based on generating a newtrajectory plan after the target location is modi�ed (or alternatively, gen-erating the trajectory plan continuously as the movement progresses). Thenew trajectory plan is chosen such that the velocity and acceleration will becontinuous with the old plan, but to end up at the new target location. Todo this requires information about the current kinematic state. Feedbackfrom vision and proprioception would be too slow to use, hence this modelrequires that e�erence copies of the current state be available.5.3 Models for 2D movements in a planeFlash & Henis (1991) presented a kinematic model for the generation of armmovements in a horizontal plane. Their model produces trajectories thatminimize an objective function. It is known as the minimum-jerk model,and its cost function is the square of the magnitude of the jerk (rate ofchange of acceleration):C = 12 Z tft0  �d3xdt3 �2 + �d3ydt3 �2! dt (5.1)C is the cost, x and y are the time-varying hand positions, t0 is the time atthe start of the movement, and tf at the end of the movement.By using the Euler-Lagrange equation, the unique solution for a move-ment from (x0; y0) to (xf ; yf) beginning at time t0 and �nishing at tf is givenby (Flash & Hogan, 1985):x(t) = x0 + (xf � x0) (10� 3 � 15� 4 + 6� 5)y(t) = y0 + (yf � y0) (10� 3 � 15� 4 + 6� 5) ;where � = t� t0tf � t0 : (5.2)The minimum-jerk model produces straight-line trajectories between the ini-tial and �nal point, with a bell shaped velocity pro�le. The velocity can be62



expressed as: _x(t) = 30AxD (� 2 � 2� 3 + � 4)_y(t) = 30AyD (� 2 � 2� 3 + � 4) (5.3)where Ax = xf � x0 and Ay = yf � y0 are the amplitude in the x and ydirections and D = tf � t0 is the duration.A simple model can be built to simulate such trajectories. From thecurrent and desired position, the desired displacement vector d can be cal-culated: ~d = "xf � x0yf � y0# = "AxAy# (5.4)The displacement vector gives the amplitude of the movement. The durationof the movement is assumed here to be preset. A velocity pro�le for a unitamplitude, �(t), can be expressed as:�(t) = 30D �� 2 � 2� 3 + � 4� (5.5)The integral of (5.5) over the relevant time (0 � � � 1) will be 1. Thusthe velocity pro�le for an arbitrary amplitude hAx Ayi0 will be ~d � �(t).The velocity can then be integrated to give the position (with the movementbeginning at the initial position). This model is illustrated in Figure 5.1.The construction of this model to include the generation of the movementby �rst producing the velocity pro�le was selected so it will be similar tomodels for saccade generation. This model will produce trajectories thatsatisfy equation (5.3).A superposition scheme could be implemented with this model to handletrajectory modi�cation. In parallel, the model would need to generate a tra-jectory from the initial to the �rst target, and the displacement from the �rsttarget to the second target - the output would be the vectorial summation(starting the second movement at the appropriate time) of the two generatedtrajectories. Due to the linear, commutative nature of the operations, thesuperposition could also be performed on the velocity ( _x; _y) and the same63
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equation (2.28), the angular velocity can be expressed as:! = 2 ~dr�(t) + (~r0 + ~dr�(t)t)� ~dr�(t)1 + (~r0 + ~dr�(t)t) � (~r0 + ~dr�(t)t)!= 2 ~dr�(t) + (~r0 � ~dr�(t)) + (~dr�(t)t� ~dr�(t))1 + (~r0 + ~dr�(t)t) � (~r0 + ~dr�(t)t) != 2�(t)1 + (~r0 + ~dr�(t)t) � (~r0 + ~dr�(t)t) h~dr + ~r0 � ~dri (5.6)
The angular velocity will hence always be in the same direction, but with themagnitude varying as a function of time. Hence, it is a single axis rotation.The models presented for eye saccades have, however, generally beenfeedback models. Tweed & Vilis (1987) presented such a model, based onfeeding back the current eye orientation. This model, adapted for rotationvectors, is presented in Figure 5.3.The displacement that drives the feedback model is the rotation vectordi�erence between the current and desired rotation:~ds = ~rf � ~r�1i (5.7)This is di�erent from the displacement vector ~dr = ~rf�~r0 used in the previousmodel. Here the displacement is equivalent to the rotation that would take
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the angular velocity.The implementation of the integrator can be performed using an inter-mediate step. The coordinate velocity can be calculated from the angularvelocity (Van Opstal, 2001):_~r = 12 (~! + ~! � ~r + (~! � ~r)~r) (5.9)The coordinate velocity can then be integrated separately for each componentto give the trajectory in rotation vectors. Trajectories for point to pointmovements produced by this model will also be single axis rotations becausethe axis of rotation will be constant. The magnitude of the velocity will bedetermined by the form of the non-linear element.5.5 Incorporation of Listing's lawThe two previous models can be easily adapted to incorporate Listing's law.The input to the model is the desired gaze or pointing direction, which can beexpressed as a unit vector er = hx y zi0. When a Listing's law constraint isapplied (i.e. that rx = 0), then a pointing direction corresponds to a uniquerotation vector. By solving equation (2.11) with this constraint, it is possibleto �nd the unique rotation vector for a given pointing direction:2664rxryrz3775 = (�1 + x)y2 + z2 2664 0z�y3775 (5.10)An additional box to perform this transformation would then be addedto the two models, but otherwise they would perform as before. A similarapproach is used in Tweed & Vilis (1990b), where the desired gaze vectoris transformed to desired eye orientation quaternion. Hence for a saccadegenerated using this movement, the start of the movement is assumed to bein Listing's plane, and the end of the movement is speci�ed to be in Listing'splane. Although only these two positions are constrained to be in Listing's67



plane, the intermediate positions will also be in Listing's plane. This isbecause a single axis rotation between two orientations that lie in Listing'splane has a straight line path in rotation vector space (Van Opstal, 2001),and so can be represented by the following equation~r(t) = ~r1 + �(t) � (~r2 � ~r1) (5.11)where �(t) has an integral of 1 over the time of the movement (for exam-ple, equation (5.5) could be used). This does not generally hold when theconstraint on the rotation vectors is a non-
at surface.It should be noted that although the rotation vectors throughout themovement will lie in Listing's plane, the angular velocity axis for movementsthat do not begin or end at the primary position will have a tilt, i.e. they willnot lie in Listing's plane. To ensure the rotation vectors remain in Listing'splane, the angular velocity axis is required to tilt out of Listing's plane byhalf the orthogonal deviation of gaze from the primary position. This isknown as the half-angle rule (Crawford, 1998).5.6 Trajectory modi�cation with rotation vec-tor modelsWhile for the position based models, superposition could be performed at theposition or velocity level, an analogous statement does not hold for rotationvectors. If a similar strategy of superposition is to be used for rotations, itcan be performed at the level of angular velocity (~!), coordinate velocity (~_r)or rotation vector (~r).Superposition of angular velocity (~!)A test of superposition at the level of angular velocity can be performed withthe model in Figure 5.3. First, the method of composing angular velocityneeds to be considered. 68



The composition of angular velocity vectors is de�ned here as the angularvelocity ~!3(t) such that it is equivalent to the angular velocity of the followingrotation at each time step: �rst applying the rotation represented by ~!1(t),and after time � , also afterwards applying the rotation represented by ~!2(t��). For simplicity, the calculations will be performed using quaternions (seeAppendix A) and later converted to rotation vectors. Consider a vectors0 that is rotated (at each time step) by the rotation represented by thequaternion q1(t). After a time � , after the rotation represented by q1(t), therotation represented by q2(t0) is also applied. In the time scale of q1(t), thesecond rotation will be de�ned by q2(t� �), where the rotation for q2(t) forwhere t < 0 (ie no rotation) will be de�ned as the identity quaternion, thatis, a rotation of zero radians about an arbitrary axis:q2(t) = 1 + 26640003775 ; t < 0 (5.12)and so q�12 (t) = q2(t) for t < 0.The new position of the vector will be s(t), de�ned by:s(t) = q2(t� �)q1(t)s0q�11 (t)q�12 (t� �) (5.13)Taking the time velocity gives_s(t) = _q2(t� �)q1(t)s0q�11 (t)q�12 (t� �) + q2(t� �) ddt(q1(t)s0q�11 (t)q�12 (t� �))= _q2(t� �)q1(t)s0q�11 (t)q�12 (t� �) + q2(t� �) _q1(t)s0q�11 (t)q�12 (t� �)+ q2(t� �)q1(t)s0 ddt(q�11 (t)q�12 (t� �))= _q2(t� �)q1(t)s0q�11 (t)q�12 (t� �) + q2(t� �) _q1(t)s0q�11 (t)q�12 (t� �)+ q2(t� �)q1(t)s0 _q�11 (t)q�12 (t� �) + q2(t� �)q1(t)s0q�11 (t) _q�12 (t� �)= ( _q2(t� �)q1(t) + q2(t� �) _q1(t))(s0q�11 (t)q�12 (t� �))+ (q2(t� �)q1(t)s0)( _q�11 (t)q�12 (t� �) + q�11 (t) _q�12 (t� �)) (5.14)69



Then using (2.18),(2.19) and (2.20):_s(t) = ( _q2(t� �)q1(t)� q2(t� �)q1(t) _q�11 (t)q1(t))(s0q�11 (t)q�12 (t� �))+ (q2(t� �)q1(t)s0)(�q�11 (t) _q1(t)q�11 q�12 (t� �) + q�11 (t) _q�12 (t� �))= ( _q2(t� �)� q2(t� �)q1(t) _q�11 (t))(q1(t)s0q�11 (t)q�12 (t� �))+ (q2(t� �)q1(t)s0q�11 (t))(� _q1(t)q�11 q�12 (t� �) + _q�12 (t� �))= (�q2(t� �) _q�12 (t� �)q2(t� �)� q2(t� �)q1(t) _q�11 (t)q�12 (t� �)q2(t� �))(q1(t)s0q�11 (t)q�12 (t� �))+ (q2(t� �)q1(t)s0q�11 (t))(�q�12 (t� �)q2(t� �) _q1(t)q�11q�12 (t� �)� q�12 (t� �) _q2(t� �)q�12 (t� �)) (5.15)Substituting back in (5.13):_s(t) = (�q2(t� �) _q�12 (t� �)� q2(t� �)q1(t) _q�11 (t)q�12 (t� �))s(t)+ s(t)(�q2(t� �) _q1(t)q�11 q�12 (t� �)� _q2(t� �)q�12 (t� �))= ( _q2(t� �)q�12 (t� �) + q2(t� �) _q1(t)q�11 (t)q�12 (t� �))s(t)� s(t)( _q2(t� �)q�12 (t� �) + q2(t� �) _q1(t)q�11 q�12 (t� �))and from (2.22)= 2( _q2(t� �)q�12 (t� �) + q2(t� �) _q1(t)q�11 (t)q�12 (t� �))� s(t) (5.16)Hence by (2.24), the angular velocity ~!3 can be expressed as~!3(t) = 2( _q2(t� �)q�12 (t� �) + q2(t� �) _q1(t)q�11 (t)q�12 (t� �)) (5.17)Using equation (2.25):~!3(t) = ~!2(t� �) + q2(t� �)~!1q�12 (t� �) (5.18)
70



Now expanding the expression using (A.2):q2(t� �)�~!1(t) � q�12 (t� �)= [f�~q2(t� �) � ~!1(t)g+ q20(t� �)~!1(t) + ~q2(t� �)� ~!1(t)] � q�12 (t� �)= ��q�120 (t� �)(~q2(t� �) � ~!1(t))� (q20(t� �)~!1(t) + ~q2(t� �)� ~!1(t)) � ~q�12 (t� �)	� (~q2(t� �) � ~!1(t))~q�12 (t� �) + q�120 (t� �)(q20(t� �)~!1(t) + ~q2(t� �)� ~!1(t))+ (q20(t� �)~!1(t) + ~q2(t� �)� ~!1(t))� ~q�12 (t� �)= fq20(t� �)[~q2(t� �) � ~!1(t)� ~q2(t� �) � ~!1(t)] + (~q2(t� �)� ~!1(t)) � ~q2(t� �)g+ (~q2(t� �) � ~!1(t))~q2(t� �) + q220(t� �)~!1(t) + q20(t� �)(~q2(t� �)� ~!1(t))� q20(t� �)(~!1(t)� ~q2(t� �))� (~q2(t� �)� ~!1(t)� ~q2(t� �))= f~q2(t� �)� ~!1(t)) � ~q2(t� �)g+ q220(t� �)~!1(t) + 2q20(t� �)(~q2(t� �)� !1(t))+ (~q2(t� �) � ~!1(t))~q2(t� �)� ~q2(t� �)� ~!1(t)� ~q2(t� �)substituting using (A.4), and noting that (~a�~b) � ~a = 0= q220(t� �)(~!1(t) + 2(~r2(t� �)� ~!1(t)) + (~r2(t� �) � ~!1(t))~r2(t� �)� ~r2(t� �)� ~!1(t)� ~r2(t� �)) (5.19)In the above calculations, because it is assumed that q2(t��) is a unit quater-nion, then q20 = q�120 and ~q2(t��) = �~q�12 (t��). The scalar part disappearedas expected, because it is an angular velocity. The �nal expression can hencebe written as:~!3(t) = !2(t� �) + ~!1(t) + 2(~r2(t� �)� ~!1(t)) + (~r2(t� �) � ~!1(t))~r2(t� �)1 + ~r2(t� �) � ~r2(t� �)� ~r2(t� �)� ~!1(t)� ~r2(t� �)1 + ~r2(t� �) � ~r2(t� �) (5.20)Superposition of angular velocity could be performed using (5.20) at thepoint marked by 1 in Figure 5.3. Superposition at this point is problematic,because the tilt in the angular velocity necessary to remain in Listing's planeis a function of the current orientation. Superposition of the tilts in general71



will not give the required tilt for the double step movement. Minken et al.(1993) explained that every combination of angular velocity commands willfail to generate the required tilting under all circumstances. This is becausethe current orientation is also needed. An example of performing superposi-tion using (5.20) is shown in Figure 5.4. Signi�cant violations of Listing's lawcan be seen in such a case. Minken et al. (1993) made a number of sugges-tions to get around this problem. One suggestion was to use the coordinatevelocity ~_r rather than the angular velocity ~!.Superposition of coordinate velocitySuperposition of coordinate velocity could take place at the point marked 2in Figure 5.2 or at the point marked 2 in Figure 5.3. If the superposition wasperformed using the feedback model (Figure 5.3), then the rotation vectorsfrom the original (control) trajectories would need to be used. This wouldinvolve using an e�erence copy of the predicted rotation vector for a pointto point movement rather than feeding back the actual rotation vector.Superposition of coordinate velocity is much simpler - regular vector ad-dition can be used. The results of superposition of coordinate velocity onthe same data sets as before can also be seen in Figure 5.4.When superposition is performed on coordinate velocity, Listing's law isnot violated during double step trajectories. The torsional component of thecoordinate velocity _rx is always zero because Listing's law means that rx(t)is always zero, and hence the summation of coordinate velocities will alsohave a torsional component of zero. This in turn means that the torsionalcomponent of the rotation vector rx(t) will remain unchanged, that is, it willalways be zero. This holds only for the special case of Listing's law where_rx = 0 throughout the workspace.It should be noted that this model and the angular velocity based modelwill give similar trajectories for point to point movements, where both followListing's law. The di�erence can only be seen in the double step case.72
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Figure 5.4: An example of superposition of di�erent quantities. The �rstand third rows show the rotation vectors and angular velocity in compo-nents plotted against time. The second and fourth rows show the rotationvectors and angular velocity from the top, back and side views. The bluelines indicate superposition of angular velocity (!). It can be seen that non-zero torsion is introduced (the blue line in the upper-left graph has non-zerovalues), indicating violations of Listing's law due to the incorrect tilt. In con-trast, superposition of coordinate velocity (red) and rotation vectors (green)(the red and green partially obscure each other) give equivalent results - zerotorsion is maintained throughout. For superposition of these quantities, theangular velocity axis has the appropriate tilt introduced as a result of thetorsion being zero.Superposition of rotation vectorsSuperposition could also take place after the entire trajectory has been gener-ated, at the level of rotation vectors (marked by 3 in Figure 5.2 or Figure 5.3).This could take place using rotation vector composition, de�ned in Equation73



(2.8).Initially, just the �rst rotation ~r1(t) takes place. When the second rotation~r2(t� �) begins (at time �), then they are combined according to:~r(t) = ~r2(t� �) � ~r�1b � ~r1(t) (5.21)where ~r1(t) de�nes the rotation vector as a function of time for rotatingfrom ~ra to ~rb, and ~r2(t) is the rotation vector as a function of time for amovement from ~rb to ~rc. This de�nes the result of rotating �rst by therotation represented by ~r1(t), followed by that represented by ~r2(t� �). Therotation by ~r�1b is necessary, because ~r2(t) implicitly includes a rotation to ~rb.Although both rotations introduce zero torsion, the superposition of themdoes not generally have zero torsion - this is due to the cross product in (2.8).An example of superposition of rotation vectors with the same initial datais shown in Figure 5.4, although the small torsional component is di�cultto see in the diagram. At the end of the movement, unlike with the angularvelocity, the torsion returns to zero. This is because Equation (5.21) at theend of the movement (tf) will equal:~r(tf) = ~rc � ~r�1b � ~rb= ~rc (5.22)Hence the orientation at the end of the movement will be ~rc, which is inListing's plane. So while the torsion during the movement does not obeyListing's law during superposition of rotation vectors, it does at the startand end of the movement.5.7 Incorporation of Donders' law for non-
at surfacesIn Chapter 4, it was suggested that for extended arm pointing movements,the rotation vectors describing the orientations throughout the movementmay be constrained to a curved rather than a 
at surface.74
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While this model produces single step trajectories that satisfy Donders'law, an additional problem is introduced. The Donders' operator is depen-dent on the current position, hence the superposition of two quantities, gen-erated at di�erent orientations to the current position, will not generallyresult in the correct torsion being speci�ed.Superposition of angular velocity and rotation vectors were shown to beproblematic even with a 
at plane. Superposition of coordinate velocity alsoproduces the wrong answer when considering this more general case.For example, if a gimbal-like system is used for Donders' law (see Chapter3), where the constraint on torsion isrx = s(ryrz) (5.24)then this will lead to a constraint on coordinate velocity of (by taking thetime derivative): _rx = s( _ryrz + ry _rz): (5.25)Hence performing superposition of the torsional components of two con-trol coordinate velocities _rx1 and _rx2 will give:_rx1 + _rx2 = s( _ry1rz1 + _ry2rz2 + ry1 _rz1 + ry2 _rz2)= _rx3 � s( _ry1rzz + _ry2rz1 + ry2 _rz1 + ry1 _rz2)6= _rx3 (5.26)This will only give the necessary coordinate velocity torsional component( _rx3) if s = 0 - this is if a Listing's plane is used as the Donders' law constraint.However, the bracketed terms in (5.26) are close to zero if the overlap(the time that both control trajectories are operating) is not large. With asmall overlap, the torsion generated is very close to that required to satisfythe Fick gimbal constraint. However, with a large overlap, the velocities willbe signi�cant during the overlap and hence large variations will be seen. Inboth situations though, the �nal torsion will be as required.An alternate strategy would be to perform superposition on only the _ryand _rz components of the movements. Then the _rx component would be set76



using the appropriate Donders' law constraint. This would clearly guaranteethat Donders' law is satis�ed. The movement would be e�ectively plannedin 2 dimensions, with the torsional constraint only applied at the �nal stage.For example, for a Fick rule, a form of superposition could be de�ned forcoordinate velocity such that it would always produce the correct torsion byrearranging equation 5.26:_rx3 = _rx1 + _rx2 + s( _ry1rzz + _ry2rz1 + ry2 _rz1 + ry1 _rz2) (5.27)However, performing the superposition would then require the rotationvectors of both control trajectories as well as their coordinate velocities.Performing superposition in terms of _ry and _rz does not guarantee thatthe correct �nal target location is reached. The position of the end e�ectorin space is a function of all three components of the rotation vector, not justthe torsional component. This is because the rx component is related to arotation about a space �xed axis (pointing straight ahead), rather than anarm �xed axis. Hence the value of the rx component also a�ects the positionof the end e�ector and not just the angle of rotation about its own axis.5.8 Models in Fick coordinatesThe only solution that seems to remain is to plan the motion in two dimen-sions, and then constrain the torsion. A representation is required that willensure that the primary goal, the pointing direction of the end e�ector, willbe achieved. Fick coordinates can be used for this purpose - the �F and�F angles (described in Figure 2.2) specify the pointing direction of the ende�ector, while the rotation about its own axis is speci�ed only by the  Fangle. A model can be described where the trajectory is �rst generated interms of �F and �F , hence the 2D displacement vector dF can be de�ned as~dF = "�f � �0�f � �0# (5.28)77
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allows nonholonomic 1 constraints such as \minimum rotation" to also beimplemented (Ceylan et al., 2000).The conversion from Fick coordinates to coordinate velocity will be ex-plained in more detail in Chapter 6. Implementation of the velocity box formore general situations can also be performed. The di�culties in doing thisin angular velocity space are explained in Appendix B.Constraints can be speci�ed more simply in terms of coordinate velocityrather than angular velocity. For example, for the Fick gimbal rule, �rst takethe time derivative of (3.7): _r1 = s( _r2r3 + r2 _r3)) _r1 � sr3 _r2 � sr2 _r3 = 0 (5.30)Then the normal vector to the plane of coordinate velocity vectors will beh1 �sr3 �sr2i0. For Listing's law, this simply becomes h1 0 0i0 whichis no longer dependent on the position (because we are now in coordinatevelocity space rather than angular velocity space). The coordinate velocitynecessary to adhere to any gimbal score can now be easily calculated. Asimilar procedure can be performed with a more general second order surface.Constraints that need to be in terms of angular velocity (such as minimumrotation, de�ned as N = f) can be easily converted to coordinate velocityusing (5.9).5.10 ConclusionsEye saccades and extended arm movements that observe a 
at Listing's lawconstraint can be modeled by a number of models for simple point to pointtrajectories. This is because Listing's law holds during a single axis rotationbetween two points in Listing's plane. Two classes of models have been con-sidered - models where the entire movement is planned from the beginning,1A nonholonomic constraint on velocity is one that cannot be integrated to give aconstraint on orientation. 82



and feedback models where the current orientation (or an e�erence copy of it)is compared to the desired orientation and the error between them reducedthroughout the movement.During double step movements, the situation is more complex as in gen-eral these movements will not be single axis rotations.Superposition of the coordinate velocity (~_r) will produce double stepmovements that satisfy Listing's law due to the constant zero torsional com-ponent ( _rx = 0), while superposition of angular velocity ~! will fail to producetrajectories that satisfy Listing's law. Superposition of the rotation vectors~r will not produce trajectories that satisfy Listing's law, although at the endpoints the correct torsional values will be produced, and during the move-ment, the torsion will be close to that dictated by Listing's law.When the surface for constraining the rotation vectors is not 
at, thesituation is more complicated than for the 
at Listing's plane. Even forpoint to point movements, the constraint on torsion cannot just be set at thebeginning and the end of the movement, but must be constrained throughoutthe movement.A solution to this problem is to perform superposition in two dimensions,using, for example, the �F and �F angles from the Fick angle representation.Superposition in these coordinates can be performed, with the torsional com-ponent constrained after superposition has taken place.An alternate method for constraining orientation is to constrain the ve-locity. Donders' law constraints can be expressed in terms of velocity con-straints, as well as nonholonomic constraints that cannot be expressed onlyin terms of orientation. Again the constraints must be placed in what is es-sentially the last step to ensure that the orientations produced by this modelcan satisfy the various Donders' law constraints.There are two fundamental questions that remain regarding the modelsused for the generation of extended arm movements. Is the fundamentalmechanism used for generating arm movements a feedback system or basedon superposition at some level? Secondly, are the constraints needed for83



Donders' law applied at the level of orientation or velocity? While an analysisof double step movements may shed light on the �rst question, analysis ofthe produced movements may be insu�cient to di�erentiate between the twomethods for constraining torsion.
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Chapter 6Models of motion planning forextended arm pointingmovements
6.1 IntroductionThis chapter describes an experiment designed to test the predictive powersof models for describing extended arm movements. As background, the formof trajectories in position and orientation space of single step and doublestep movements were examined. Then the predictions of several modelsfor describing double step movements were compared. A comparison wasmade between a superposition and an abort-replan model, between the useof di�erent Donders' law constraints, and between models that operate inorientation space compared to coordinate velocity space.6.2 MethodsThe experimental setup is the same as described in Chapter 4.
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P
R =p (xf � x0)2 + (yf � y0)2 + (zf � z0)2

(x0; y0; z0)
(xf ; yf ; zf )

Figure 6.1: A measure of curvature from Smit & Van Gisbergen (1990), de-�ned as C = PR . A negative sign indicates the deviation (in the y-z plane) wasin the counterclockwise direction, a positive sign in the clockwise direction.6.2.1 Techniques of analysisFirst, the unperturbed (single step) trajectories were analyzed. The shapesof the trajectories were considered in both task space, and in rotation vec-tor space. The curvature of the saccades was measured using the measuredescribed in Smit & Van Gisbergen (1990):C = P=R (6.1)where R is the amplitude of the straight line connecting the start and theend of the movement, P is the largest perpendicular deviation from this line,and C is the curvature (see Figure 6.1). The invariance of the velocity andangular velocity was compared, using principal components analysis (PCA)for functions, based on Ramsay & Silverman (1997) using the accompanyingMatlab software (Ramsay, 2001). Principal components analysis for func-tions identi�es the strongest modes of variation in the variables by �nding aweight function that maximizes a measure of this variation. Each principalcomponent is orthogonal to all other components so that each componentshows something new, and has a score to indicate how much of the variationit accounts for.Velocity and angular velocity are analyzed rather than position or orienta-86



tion because they ignore shifts between the starting positions of movements.The variations in the velocity and angular velocity within and between sub-jects were considered.Initially, the trajectories of the double step movements were consideredin two dimensions in Fick notation, using �F and �F . This uniquely de�nesthe pointing direction of the arm, but not the torsion. The following analysiswas performed simultaneously in the �F and �F components on each doublestep movement.A superposition scheme similar to that in Flash & Henis (1991) was used.1. A point-to-point trajectory was selected from the control movements,that after being appropriately time-scaled to coincide with the trajec-tory being tested, is the closest (in terms of mean distance) during the�rst tenth of the duration of the movement. The selection of the closestcontrol movement was necessary because of signi�cant variation in thestarting positions of the movements. This trajectory was called the�rst control movement (�1(t)).2. The �rst signi�cant deviation in velocity pro�les between the �rst con-trol movement and the test movement was found.3. The second control movement was found by scaling in time and spacethe mean of single step movements from the �rst target to the secondtarget so that it began at the time the �rst control movement ended atthe location of the end of the �rst control movement, and �nished atthe time of the end point of the movement at the location of the endpoint of the double step movement. This was called the second controlmovement (�2(t)).4. From the time of the �rst signi�cant deviation, the trajectory producedby the superposition model was de�ned as the addition of the �rstcontrol movement, and the di�erence of the second control movement
87



from its starting position. i.e.�(t) = 8>>>>>><>>>>>>:
�1(t) 0 � t < t1�1(t) + �2(t� t1)� �b t1 � t � t2�b t2 � t � t1�2(t� t1) t2 � t � t3; t1 � t � t3 (6.2)where �(t) is the Fick angle at time t, �b is the Fick angle at the endof the �rst control movement, t1 is the time at the �rst signi�cantdeviation between the �rst control movement and the test movement,t2 is the time at the end of the �rst control movement, t3 is the time atthe end of movement and t is the time such that 0 � t � t3 throughoutthe movement.Note that if there is no overlap (i.e. the �rst control movement endsbefore t1) then the Fick angle remains at �b from t2 until t1.5. As an alternative scheme, the abort-replan strategy will be tested,based on the techniques presented in Henis (1991). A 5th order poly-nomial will be �tted such that the Fick angle, velocity and accelerationat the start of the movement are equal to those of the trajectory beingtested at the time of the �rst signi�cant deviation. The angle at theend of the predicted movement needs to be equal to the angle at theend of the movement being tested, and the velocity and accelerationare assumed to be zero at the end of the movement. The unique 5thorder polynomial that satis�es these constraints can be expressed as�a-r(t) = �6�c � 6�d � 3 _�d � 12 ��d�� t� t1t3 � t1�5+ ��15�c + 15�d + 8 _�d + 32 ��d�� t� t1t3 � t1�4+ �10�c � 10�d � 6 _�d � 32 ��d�� t� t1t3 � t1�3+ 12 ��d � t� t1t3 � t1�2 + _�d� t� t1t3 � t1�+ �d (6.3)
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where �a�r(t) is the predicted Fick angle of the abort-replan model(valid for t1 � t � t3), �c is the Fick angle at the end of the trajectory(time t3), �d is the Fick angle at the time of the �rst signi�cant deviationbetween the �rst control and the test movement (t1), and _� and ��represent the �rst and second derivatives with respect to time. Theentire predicted movement can be expressed as:�(t) = 8<:�1(t) 0 � t < t1�a-r(t) t1 � t � t3 (6.4)The two trajectories in terms of �F and �F were compared to the exper-imental double step trajectories. The error is de�ned as the distancebetween the prediction of the model and experimental data summedover the sample points, divided by the distance of the experimentaldata from the start of the movement summed over the sample points:EF = Pip(�mi � �ei)2 + (�mi � �ei)2Pip(�ei � �e1)2 + (�ei � �e1)2 (6.5)where �mi and �ei are the relevant Fick coordinates at time i for themodel and experimental data respectively, where i = 1 refers to thetime at the start of the movement. The sum is performed over thetime points where the movement is sampled.6. The models were also be extended to 3D rotation vector space. To dothis, the rotation vectors were generated from the Fick angles, whichcan be performed using equation (2.13). However, this equation re-quires the Fick torsional angle  F , which is unknown. A constraintcan be placed on the torsion using Donders' law. Equation (2.13) pro-vides three equations, while the Donders' law constraint provides afourth. A second order surface, where the constraint is equation (3.3),and a Listing's law constraint (rx = 0) were tested. The constantsgenerated in �tting the surfaces in Chapter 4 were used for the secondorder surface. 89



This gives four unknowns, rx, ry, rz and  F , and four equations. Notethat the ry and rz values for a given pointing direction are not unique. Itis not clear if there is an analytic solution to �nd these variables - hencethe solution was found numerically, using the Levenberg-Marquardtmethod (Jacobs, 1977). The predicted rotation vectors will be com-pared to those from the experimental data, using a similar error mea-sure to before:Er = Pip(rxmi � rxei)2 + (rymi � ryei)2 + (rzmi � rzei)2Pip(rxei � rxe1)2 + (ryei � rye1)2 + (rzei � rze1)2 (6.6)where rxmi and rxei are the rotation vector component rx of the modeland the experimental data at time i.A similar algorithm will be followed to test the \velocity box" model.1. The time derivative of the Fick angles will be calculated.2. The conversion to coordinate velocity vectors is achieved using Equa-tion (2.15). An additional equation is speci�ed by the constraint onvelocity, as explained in Chapter 5. In this case, the constraint is thetime derivative of the second order surface (3.3):_rx = e _ry + f _rz + 2g _ryry + h( _ryrz + _rzry) + 2j _rzrz (6.7)In this case there are �ve unknowns ( _rx; _ry; _rz;  ; _ ) (the value of rx,ryand rz are assumed to be known from feedback, according to the ve-locity box model), but only four equations. A �fth equation can bewritten relating  to the current orientation.The rotation to a given arm orientation can be decomposed into tworotations - one which rotates the arm to the desired position, and an-other which rotates the arm about its own axis to give the desired valueof torsion. The �rst rotation is equivalent to the �rst two terms in theequation for a rotation in Fick coordinates (2.5), while the second is90



equivalent to the rotation by the Fick torsional angle  about the point-ing direction of the arm. This can be expressed as the composition oftwo rotation vectors:~rtotal = ~er tan� 2� � ~n tan��2� (6.8)where ~rtotal is the rotation vector representing the combined (total)rotation to the current arm position from the reference position, ~er is aunit vector in the direction of the pointing direction, ~n is the unit vectorthat is the axis of rotation for a rotation from the reference position to~er, while � is the angle of rotation about that axis that takes the armto its current pointing direction (from the reference position).This expression can be expanded using the rule for rotation vectorcomposition (2.8):~rtotal = ~er tan  2 + ~n tan �2 + ~er tan  2 � ~n tan �21� �~er tan  2 � � �~n tan �2 �Note that ~n and ~er are orthogonal, so their dot product will be zero) ~rtotal = ~er tan  2 + ~e0 � ~erj~e0 � ~erj tan �2 + ~er tan  2 � ~e0 � ~erj~e0 � ~erj tan �2 (6.9)Let the reference position be a unit vector pointing straight ahead(~e0 = h1 0 0i0) and the current pointing direction will be de�nedas ~er = hx y zi0, where px2 + y2 + z2 = 1. Then~e0 � ~er = 2664 0�zy 3775 and ~er � (~e0 � ~er) = 2664y2 + z2�xy�xz 3775 (6.10)Equation (6.9) is a three element vector equation - we will look at just
91



the �rst component (rx):rx = x tan  2 + tan  2 tan �2 y2 + z2py2 + z2) tan  2 = rxx +py2 + z2 tan �2 (6.11)The angle � is the angle between ~er and ~e0, and hence can be expressedas � = arccos(~e0 � ~er) = arccos(x) (6.12)Using the identity tan �2 = �r1� cos�1 + cos� (6.13)the value of  can now be found = 2 arctan0@ rxx�py2 + z2q1�x1+x1A (6.14)With the �ve equations, a numerical solution for ~_r can be found at eachtime step. The rotation vectors can be calculated by integrating ~_r. Therotation vector at the beginning of the movement was assumed to bethe same as that from the experiment. The rotation vectors calculatedwere then compared to the experimental data as before using Equation(6.6).6.3 Results6.3.1 Analysis of control movementsWhen considered in three-dimensional position space, such as in the coor-dinate system described in Figure 2.1, extended arm movements span thesurface of a sphere (centered at the shoulder), and hence a point to point92



−8 −6 −4 −2 0 2 4

−100

−50

20

40

60

x (cm)

r to s

y (cm)

z 
(c

m
)

−10
−5

0
−100

−80
−60

−40
−20

20

40

60

x (cm)

s to t

y (cm)

z 
(c

m
)

−10
−5

0
5

−100
−80

−60
−40

−20

20

40

60

x (cm)

t to u

y (cm)

z 
(c

m
)

−10
−5

0
5

−100

−50

20

40

60

x (cm)

u to s

y (cm)

z 
(c

m
)

Figure 6.2: Trajectories of the control movements for subject 3. The blacklines show the projections onto the x-y, y-z and x-z planes.movement can not be a straight line in the workspace. This can be seen inthe control movements { those for subject 3 are shown in Figure 6.2. Theresults for the other subjects can be found in Appendix D. The paths for thesame control movement are all very similar - the main cause of variabilityhere is variation in the x coordinate, which may be caused by small transla-tions of the shoulder (although it should be noted that the scale of the axesare not uniform, and so the variation in the x component is quite small).The trajectories, as expected, are curved, although the projection ontothe y � z plane shows nearly straight paths in this plane. While a geodesicis the shortest path between two points on a sphere, straight paths in they � z plane are not, in general, geodesics. A straight line projection inthe y � z plane means that there is a plane that passes through a straightline in the y � z plane and the path. If the path were a geodesic, then there93
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In the vy and vz components, a bell shaped velocity pro�le is seen, whichis fairly invariant between movements (which have been time scaled, with thevelocity also scaled to ensure the integral of the graph remains constant). Inthe vx component, a reverse in the direction of the velocity is seen - this isbecause the movements take place on a sphere.To compare the variation in the control movements, principal componentsanalysis was performed. The analysis of the velocity of one set of controltrajectories, that for Subject 5, movement r ! s, is shown in Figure 6.5.
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6.3.2 Analysis of double step movementsInitially, the trajectories were analyzed in two dimensions, using the Fickcoordinates �F and �F (but not  F ). Two models were tested - the super-position model, and an abort-replan model. The results of these predictions,along with the actual trajectories are plotted for Subject 3, Set 1 for theforearm (Figures 6.15, 6.17, and 6.19) and the upper arm (Figures 6.16, 6.18,6.20).
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 (o)Figure 6.18: Predicted and actual 2D Fick trajectories for medium overlap(between 0.2 and 0.6) for the upper arm for Subject 3, Set 1. See Fig. 6.15for an explanation of the colours.

−50 0
−30

−25

−20

−15

−10

−5

0
r→s→t

φ F
 (

 o  )

−50 0
−30

−25

−20

−15

−10

−5

0
r→s→t

−50 0
−30

−25

−20

−15

−10

−5

0
t→u→s

Figure 6.19: Predicted and actual 2D Fick trajectories for large overlap(greater than 0.6) for the forearm for Subject 3, Set 1. See Fig. 6.15 foran explanation of the colours. 106
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Figure 6.20: Predicted and actual 2D Fick trajectories for large overlap(greater than 0.6) for the upper arm for Subject 3, Set 1. See Fig. 6.15for an explanation of the colours.For ease of comparison, the movements were divided into 3 groups, basedon the \overlap" - this is de�ned as, assuming superposition takes place, theproportion of time (of the complete movement) that the two control trajec-tories are operating at the same time. They were divided into those withsmall or no overlap (overlap less than or equal to 0.2), those with moderateoverlap (overlap between 0.2 and 0.6), and those with large overlap (overlapgreater than 0.6). Di�erent behaviour can be seen in the di�erent cases.When there is no or small overlap, the combined trajectory consists of amovement to the �rst target, followed by a movement from the �rst to thesecond target, either with a pause between the movements (if there is nooverlap), or with the second movement starting slightly before the end of the�rst movement. The di�erence between the predictions of the abort-replanand the superposition schemes is negligible for such movements.Where there is a moderate overlap (between 0.2 and 0.6), a more curvedtrajectory can be seen near the end of the �rst control trajectory. The addi-tion of the start of the second control movement causes a smooth turn to thesecond target rather than a sharp point. Again, the predictions from bothschemes are very similar, and give predictions close to the actual trajectories.For large overlaps (greater than 0.6), the trajectory of the double step107



movement very quickly deviates from that of the �rst control movement, andhighly curved trajectories are generated. In some of these cases, a large di�er-ence is seen between the prediction of the superposition and the abort-replanscheme. The superposition scheme in these cases provides a much better ap-proximation to the trajectory. This is because the trajectory does not takethe most direct path (while taking into account smoothness of velocity andacceleration), as would be the case if an abort-replan scheme were used. Thegraphs of large overlap for the other subjects are displayed in Appendix J.The errors in predicting the trajectories for the two schemes for Subject3 are summarized in Figure 6.21. The results for the other subjects can befound in Appendix K.The results have been presented grouped by ISI. Movements with largeoverlaps are only seen for small ISIs. When the ISI is 300ms or above, thereare generally no large overlaps found (an exception is found in Subject 2).This is because of the reaction time - the �rst movement would be completedor nearly completed before the target jumps and the modi�cation can takeplace.Both of the models considered operate in two dimensional Fick coordi-nate space. The summary of the errors show that in these coordinates bothmodels have good predictive powers when there is no, small or moderateoverlap. Both models produce very similar predictions for such overlaps.The predictions of the superposition model are in general slightly worse forlarge overlaps compared to smaller overlaps, however they are much betterthan the predictions of the abort-replan model. Hence only the superpositionmodel provides good predictions throughout the entire range of overlaps formovements considered in terms of �F and �F .
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The rotation vectors equivalent to the Fick angles generated by the su-perposition scheme were then calculated, under the assumption of Donders'Law. Two Donders' law conditions were tested - Listing's law (rx = 0), anda second order surface. The rotation vectors for Subject 3, Set 1 are shownfor the forearm (Figure 6.22) and the upper arm (Figure 6.23).These graphs are plotted in components (rx,ry and rz) against time. Theresults for the other subjects for the cases with large overlap are displayedin Appendix L.The predicted ry (green) and rz (red) components are quite similar for allthe planning schemes. Slightly di�erent results are found in these componentsdepending on the Donders' law constraint because these values are not uniquefor given values of �F and �F but depend also on the torsion of the arm.Signi�cant variation, however, can be seen in the rx component.The errors in rotation vector space for Subject 3 are summarized in Fig-ure 6.24. The results for the other subjects can be found in Appendix M.From Figure 6.24, for forearm movements, considerable errors can beseen with all the planning schemes - this is due mostly to errors in the rxcomponent, as can be seen in Figure 6.22. For the forearm, the Listing'slaw scheme produces more accurate predictions, despite the �nding that asecond order surface was a better �t to the data. The process of �tting thereference position rotated the rotation vectors such that the rotation vectorsare distributed evenly about the ry � rz plane - meaning that on averagerx = 0 is a good prediction of the torsion. The second order surface, whichcan have a large range of rx especially at the edges of the workspace, maybe a poor approximation in parts of the workspace. This may explain whyusing Listing's law may on average give a better �t.For subject 3, the results for the upper arm showed better results thanthat for the forearm. This is in line with the �nding in Chapter 4 that thethickness of the Donders' surfaces were less for the forearm than the upperarm. Still, signi�cant deviations are seen. An example of this can be seen inFigure 6.22. The movements that begin and end at s have di�erent torsional110
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Figure 6.22: Rotation vectors (in degrees) during double step movements forthe forearm for Subject 3, Set 1, in components - rx (blue), ry(green) andrz(red). The dashed lines shows the experimental data, the solid line theprediction with a second order surface Donders' constraint on orientation,the dotted line the prediction of a Listing's law constraint on orientation(only the rx component shown) and the dotted-dash line the prediction fora second order surface constraint on coordinate velocity.
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Figure 6.23: Rotation vectors (in degrees) during double step movements forthe upper arm for Subject 3, Set 1 in components. See Figure 6.22 for anexplanation of the colours.values. (This can also be seen from Figure C.2).However, the other subjects did not show signi�cant di�erences betweenthe forearm and the upper arm. For subject 4, the results for the forearmappear to be better than those for the upper arm.The results for the model where the constraint was placed on velocity112



N/S M L
0

0.5

Forearm

50

N/S M L
0

0.5

Upper arm

N/S M L
0

0.5

300

N/S M L
0

0.5

N/S M L
0

0.5

100

N/S M L
0

0.5

N/S M L
0

0.5

400

N/S M L
0

0.5

N/S M L
0

0.5

150

N/S M L
0

0.5

N/S M L
0

0.5

550

N/S M L
0

0.5

N/S M L
0

0.5

200

N/S M L
0

0.5

N/S M L
0

0.5

700

N/S M L
0

0.5

Figure 6.24: Summary oferrors of three dimensionalmodels for Subject 3. Theheight of the bars is themean, and the error barslength the standard devia-tion of the error between theactual trajectory and the pre-dictions, with di�erent Don-ders' law constraints on theorientation - a second or-der surface constraint (blue),a Listing's law constraint(green), and a constraint onthe coordinate velocity (red).The results are divided intothose with no or small (N/S)overlap (less than 0.2), mod-erate (M) overlap (between0.2 and 0.6), and large (L)overlap (greater than 0.6).The left column shows theforearm results, and the rightthe upper arm, and each rowthe results for the ISI shown.Similar results are seen formany of the trials, while forsome the Listing plane con-straint shows better results.113



were also shown on the same �gures. These are very close to the results forthe second order surface, because using the velocity does not give any furtherinformation, and the velocity constraint su�ers from the same problems asthe constraints on the orientation do.

114



6.4 DiscussionThe point-to-point control movements generally showed invariant character-istics. In velocity space, the movements in the vy and vz components were bellshaped and nearly symmetric. As the length of the arm is �xed throughoutthe movement, the vx component is a function of the other two components,and so in general did not show bell shaped velocity pro�les.The paths were found to be close to geodesics, which can account forsome of the curvature observed. However, curvature of greater magnitudethan that expected for a geodesic was found, and the direction of the cur-vature varied between subjects. The highest values of curvature were foundfor diagonal movements. Atkeson & Hollerbach (1985) found that during un-constrained vertical movements, curved rather than straight movements areproduced and suggested that this may be related to di�culties in handlinggravity - this may explain the curvature seen in some of the cases.In Desmurget et al. (1997), it was suggested that curvature is greater inunconstrained than compliant movements. Although this is not a compliantmovement, a constraint is placed on the movements by the extended armrequirement. However, although curvature greater than that predicted bya geodesic movement was found, unlike in their study the direction of thecurvature was not consistent. This suggests that the curvature seen here is aresult of errors rather than a strategy. The movements seen here had invari-ant characteristics in hand space - this feature they saw only in complianthand movements. It may be that the extended arm constraint, which reducesthe available workspace, causes the movements to have similar properties tocompliant hand movements. This in turn may mean that the results foundhere can not be extrapolated to general, unconstrained three-dimensionalarm movements.Some of the rotation vectors describing the movements were found to behighly curved, meaning that single axis rotations are not, in general, used.This was in contrast to the nearly straight line path seen with the position.In angular velocity space, bell shaped pro�les were seen in !y and !z,115



however the torsional component !x showed a signi�cant amount of varia-tion. The torsional component (!x) of the angular velocity can vary withoutsigni�cantly a�ecting the �nal pointing direction. The variation in the tor-sional component of the angular velocity was found to be greater for theforearm than for the upper arm.The results for the double step trajectories show that the movements canbe well modeled in two dimensional Fick coordinates using a superpositionmodel, where the trajectory consists of the vector addition of the trajectory inFick coordinates from the start to the �rst target, and a trajectory consistingof the di�erence in Fick coordinates from the �rst to the second target. Whilean abort-replan model provides good predictions when the overlap is small,this model fails for larger overlaps.Evidence of the use of the di�erence from the �rst to the second target wasseen in a study of double step movements in the horizontal plane. Boulinguezet al. (2001) found that when there is a gap between the extinction of the�rst target and the presentation of the second target, it is likely that di�erentprocesses are used compared to when there is no gap between the two targets.They proposed that this is because information from the retinal error (thedi�erence from the �rst to the second target) would be available in the no-gapcase, but unavailable when there is a gap. The movements that could makeuse of this information (which the superposition model uses) had a reducedlength of time before the �rst observable correction in the arm trajectory.Some of the errors seen for superposition of trajectories may have beendue to what is known as averaged trajectories. These are trajectories thatrather than beginning to move towards the �rst or the second target, insteadmove towards some intermediate point. Henis (1991) showed that for move-ments in a horizontal plane a modi�ed version of the superposition model canbe used to predict the trajectories of these movements. It may be possibleto use a similar procedure with these movements to produce a more accuratemodel.The extension of the model to rotation vectors provides reasonable pre-116



dictions, but with signi�cant errors seen in the torsional component (rx).The amount of variation seen is a small fraction of the possible values thatthe arm could take. The errors in torsion appear to be due to the selectionof di�erent torsional values for the start and end of the movements.In this task, successful completion is achieved by having the arm end upin the correct pointing direction. The value of torsion is not important inachieving this goal. This may mean that the value of torsion is less controlledthan the other variables, and the values of torsion seen are by-products ofprocesses acting on the other variables. Scholz et al. (2000) suggested thatfor each task, a set of relevant task variables can be de�ned, which canthen be combined to form a UCM (\uncontrolled manifold"). A relevanttask variable for this task would be the vector of the pointing direction ofthe arm. For other examples, they showed that the variation in the jointcon�gurations parallel to the set of appropriate task variables had a UCMthat showed signi�cantly less variability to the joint con�gurations that wereperpendicular. This may provide an explanation of why the variation intorsion is much greater than in the other components - it does not howevergive a way of predicting torsion.The constraints on the orientation used in the models require knowledgeof the current pointing direction. The use of feedback for trajectory gen-eration is problematic because of the slow speed of sensory feedback loops.Proprioceptive or visual feedback is too slow to allow it be used. It is a fun-damental requirement of feedback models that some information about thecurrent state is available in order to plan the current action. A solution tothis problem may be found by the use of a forward model (Kawato, 1999).This is where the current state of the arm is predicted for a given action,based on learning from previous movements. This allows a feedback model tobe implemented, using the current predicted arm location for feedback. Thiscould be realized using a hybrid model (Desmurget & Grafton, 2000; Sabes,2000), which begins with a feed-forward motor plan, which is then correctedby using the forward model as the movement progresses. The forward model117



itself may be corrected using visual and proprioceptive feedback.No signi�cant di�erence was seen between using constraints on orienta-tion or on velocity. Constraints on coordinate or angular velocity rather thanon rotation vectors do have some advantages. There is more invariance in an-gular velocity than in rotation vector paths, and more varied, nonholonomic,constraints can be placed on the angular velocity than the orientation (Cey-lan et al., 2000). From these results, it is not possible to determine whetherconstraints are placed on orientation or coordinate or angular velocity.The movement plans that have been considered have all been based onkinematics alone. This assumption is based on the invariance seen in the ve-locity pro�les. However dynamics clearly must play a role in movement plan-ning. These models implicitly assume that the dynamics would be plannedafter the path. A more realistic model may be one that is planned on a com-bination of kinematic and dynamic factors (Soechting & Flanders, 1998).
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Chapter 7SummaryThis work studied models for the generation of extended arm movements.Di�erent surfaces were compared for their ability to describe permissiblearm orientations throughout the movement. Additionally, two models, thesuperposition and the abort-replan models, were compared and tested fortheir success in predicting the trajectories of double step movements.When considered in rotation vector space, the end points show morevariation in the torsional component (rx) than the other components. Thisincreased variation is also seen throughout the movements. While the pro�lesof the angular velocity are invariant in the horizontal (!y) and vertical (!z)components, the torsional component (!x) shows considerable variation. Thevariation in the torsion is generally greater for the forearm than the upperarm, suggesting that the forearm torsion is less planned than that of theupper arm.Despite this variation, it is possible to �t surfaces to the rotation vectorsrepresenting the movements. These surfaces can act as a constraint on thevalues that the rotation vectors can take. This constraint is known as Don-ders' law. A 
at plane, where rx = 0 provides the best overall �t, althoughfor each set of movements, a second order surface gives a closer �t, but notone that is consistent across sets of movements or between subjects. The ori-entations reachable by a Fick gimbal system with zero torsional component119



were also considered as a surface, but this showed no improvement over a
at plane.Dividing the workspace into smaller subspaces and then �tting the sur-faces separately for each of the subspaces produces a signi�cantly better �t.The �t of surfaces to orientations only at stationary locations was also signif-icantly better than the �t to orientations sampled throughout the movement.This suggests that the Donders' law constraints may be applied only at theendpoints. However, the �t of the surfaces during single step and double stepmovements (which are much more curved than single step movements) wassimilar. Is seems that the same strategy for constraining torsion is used inboth cases.When considered in position space, the movements were invariant, andshowed bell shaped velocity pro�les in the y and z coordinates. Some curva-ture was seen, but not with a consistent pattern, suggesting that it was dueto errors. Similar invariance is also seen when the trajectories are consid-ered in two dimensional Fick coordinates (�F and �F ), where the torsionalcomponent is not considered.Superposition in two dimensional Fick coordinates provides a good de-scription of the double step trajectories, whereas the abort-replan schemefails when the deviation of the double step movement from a movement fromthe initial location to the �rst target occurs soon after the movement onset.The fundamental di�erence between the two methods is that the superposi-tion strategy is based on the combination of two movement plans constructedin advance, while the abort-replan is based on feedback of the current orien-tation.The extension to a full three dimensional orientation model also requiresinformation about the current orientation. The appropriate rotation vectorwas selected to be in the correct pointing direction and satisfy a Donders'law constraint. This produced trajectories where the torsion was a reasonableapproximation to the predictions but did not follow them closely. It was notpossible to determine from the results whether these constraints are applied120



in terms of orientation, or angular or coordinate velocity.Extended arm movements appear to be planned in two dimensions, per-haps in two dimensional Fick coordinates (�F and �F ). Subsequently, doublestep trajectories can be well modeled using superposition in two dimensions.The torsional component appears to be planned to a lesser extent and inde-pendently from the other two dimensions.
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Appendix AQuaternionsQuaternions are four-dimensional structures, that have some useful proper-ties in relation to �xed axis rotations. A quaternion is de�ned asq = cos��2�+ sin��2�~n (A.1)where ~n is the axis of rotation and � the size of the rotation (from somereference point). Note that this gives a scalar component, called q0, and a 3element vector component, called ~q.The multiplication of two quaternions is achieved by the following ruleHaslwanter (1995):q � p = q0p0 � ~q � ~p+ (q0~p+ p0~q + ~q � ~p) (A.2)Note also that the product, or composition, of two quaternions gives anotherquaternion. This product gives the rotation made up of a rotation fromreference position by p followed by a rotation by q.Quaternions have the elegant property that the rotation of a vector ini-tially at s0 by the rotations represented by q(t) can be described by thequaternion product s(t) = q(t) � s0 � q�1(t) (A.3)129



Quaternions are related to rotation vectors by the simple relationship~r = ~qq0) ~q = q0~r) _~q = _q0~r + q0 _~r (A.4)Here we will use normalized quaternions (that is, jqj =pq20 + ~q � ~q = 1), andhence the inverse q�1 of a quaternion can be written asq�1 = q0 � ~q (A.5)
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Appendix BSetting the velocity rules withthe \Velocity box" modelThe velocity box model presented in Chapter 6 has the option of setting thegimbal score (s). For example, a score of �1 refers to a Fick gimbal with theFick torsional component set to zero, whereas a score of zero refers to a 
atListing's plane rule. This leads to the question of how these constraints canbe applied using velocity rather than orientation constraints to allow a moregeneral operator (using velocity constraints allows the use of nonholonomicconstraints).In Ceylan et al. (2000), it is explained that the Fick pattern is achieved byrotating f (a unit vector in the gaze / pointing direction) into the horizontalplace. In the paper, it is suggested that this be achieved by normalizing(making its length 1) N�ck = k � (f � k), where k is a body �xed vectorpointing up and N�ck is the normal vector to the plane of permissible angular
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velocity vectors. Equivalently:N�ck = a(k � (f � k))= a((k � k)f � (k � f)k)= a(f � 2664 00f33775)= a2664f1f20 3775= 1pf 21 + f 22 2664f1f203775
(B.1)

where a is the scalar required to normalize the vector. Similarly, they explainthat for a Helmholtz pattern is achieved by rotating f into the sagittal plane(ie normalizing NHelmholtz = j � (f � j)). This can also be expressed asNHelmholtz = 1pf 21 + f 23 2664f10f33775 (B.2)Furthermore, they stated that the normal to the velocity plane for List-ing's law is halfway between the two previously mentioned normals, that is,it bisects the angle between NHelmholtz and NFick. They stated that this isequivalent to NListing = f+ i normalized. This is the half angle rule (Van Op-stal, 2001). If these two formulations are equivalent, then (where d and e arethe appropriate scalars to normalize):d(NFick +NHelmholtz) = e(f + i)) d0BB@ 1pf 21 + f 22 2664f1f203775+ 1pf 21 + f 23 2664f10f337751CCA = 1p(f1 + 1)2 + f 22 + f 33 2664f1 + 1f2f3 3775(B.3)132



Considering just the second component, then:dpf 21 + f 22 f2 = 1p(f1 + 1)2 + f 22 + f 33 f2) dpf 21 + f 22 = 1p(f1 + 1)2 + f 22 + f 33 (B.4)and just the third component:dpf 21 + f 23 f3 = 1p(f1 + 1)2 + f 22 + f 33 f3) dpf 21 + f 23 = 1p(f1 + 1)2 + f 22 + f 33 (B.5)Then from (B.4) and (B.5), dpf 21 + f 22 = dpf 21 + f 23) f 21 + f 22 = f 21 + f 23) f2 = �f3 (B.6)Now the left hand side of (B.3) can be more succinctly expressed as:d(NFick +NHelmholtz) = dpf 21 + f 22 26642f1f2f3 3775 (B.7)This allows d to be easily calculated (it is the normalizing factor):dpf 21 + f 22q4f 21 + f 22 + f 23 = 1) d = pf 21 + f 22p4f 21 + 2f 22 (B.8)Now (B.3) and (B.7) can be rewritten asd(NFick +NHelmholtz) = 1p4f 21 + 2f 22 26642f1f2f3 3775 (B.9)133



Now looking back at the second component in (B.3), we can see that1p4f 21 + 2f 22 = 1p(f1 + 1)2 + 2f 22) 4f 21 + 2f 22 = (f1 + 1)2 + 2f 22) 3f 21 � 2f1 � 1 = 0) f1 = 1 or � 13 (B.10)
Substitution of f1 = 13 into (B.3) causes a contradiction, and hence the onlysolution is for f1 = 1. As f is a unit vector, this implies that it is thevector f = 26641003775. This is the vector that is pointing straight ahead - ie, thereference position. This is the unique position where the normal to the Fickand Helmholtz velocity planes will be the same (equal to 26641003775), which is alsothe normal vector for Listing's law at this point, being the reference position.Hence the stated conclusion that (B.3) is true is actually only the case in thespecial case of the reference position.The continuum between a Fick gimbal and a Helmholtz gimbal in termsof orientation can be expressed by the gimbal score (3.7). To build a realistic\Velocity box" model, it would be necessary to be able to express positionsin the continuum as velocity constraints and not just the extreme cases.Previous experimental results, for example Ceylan et al. (2000), have showngimbal scores can vary and are not limited to -1, 1 and 0 (representing a Fickgimbal, Helmholtz gimbal and Listing's law).One option is to set three normal vectors (the one de�ned by Listing'slaw (the half angle rule), the normal for a Fick gimbal, and the normal for aHelmholtz gimbal) and then interpolate between then for twist scores betweenthese values. It is not possible to just interpolate between the value for aFick gimbal and a Helmholtz gimbal for the reasons described previously. It134



is unclear if in such a scheme � corresponds to the twist score s.N(�; f) = 8<:NListing � �(NFick �NListing) if � < 0NListing + �(NHelmholtz �NListing) if � > 0 (B.11)An alternative approach would be to use coordinate velocity constraints.This method was explained in Chapter 5.
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Appendix CSpread of rotation vectors atend pointsThe following graphs show the spread of the rotation vectors at each of thestart / end points. The graph for Subject 1 is shown in the main body ofthe text (Figure 4.5). The rows represent the targets R, S, T , U , V (and Wfor subject 2).
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Figure C.1: End point spread of forearm rotation vectors for subject 2, Greendenotes double step movements and red control movements ending at a par-ticular point, blue denotes movements starting at that point.
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Figure C.2: End point spread of forearm rotation vectors for subject 3, Greendenotes double step movements and red control movements ending at a par-ticular point, blue denotes movements starting at that point.
138



−40 −20 0 20 40
−40

−20

0

20

40

Behind view

r
y
 (o)

r z (
o )

R

−40 −20 0 20 40
−40

−20

0

20

40

Side view

r
x
 (o)

r z (
o )

−40

−20

0

20

40

−40 −20 0 20 40

Above view

r
y
 (o)

r x (
o )

−40 −20 0 20 40
−40

−20

0

20

40

r
y
 (o)

r z (
o )

S

−40 −20 0 20 40
−40

−20

0

20

40

r
x
 (o)

r z (
o )

−40

−20

0

20

40

−40 −20 0 20 40
r
y
 (o)

r x (
o )

−40 −20 0 20 40
−40

−20

0

20

40

r
y
 (o)

r z (
o )

T

−40 −20 0 20 40
−40

−20

0

20

40

r
x
 (o)

r z (
o )

−40

−20

0

20

40

−40 −20 0 20 40
r
y
 (o)

r x (
o )

−40 −20 0 20 40
−40

−20

0

20

40

r
y
 (o)

r z (
o )

U

−40 −20 0 20 40
−40

−20

0

20

40

r
x
 (o)

r z (
o )

−40

−20

0

20

40

−40 −20 0 20 40
r
y
 (o)

r x (
o )

−40 −20 0 20 40
−40

−20

0

20

40

r
y
 (o)

r z (
o )

V

−40 −20 0 20 40
−40

−20

0

20

40

r
x
 (o)

r z (
o )

−40

−20

0

20

40

−40 −20 0 20 40
r
y
 (o)

r x (
o )

Figure C.3: End point spread of forearm rotation vectors for subject 4, Greendenotes double step movements and red control movements ending at a par-ticular point, blue denotes movements starting at that point.
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Figure C.4: End point spread of forearm rotation vectors for subject 5, Greendenotes double step movements and red control movements ending at a par-ticular point, blue denotes movements starting at that point.
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Figure D.1: Trajectories of the control movements for Subject 1.
Appendix DPaths of control movements(position)The paths of the control movements are shown here for all subjects exceptsubject 3 (this is shown in Figure 6.2).141
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Figure D.3: Trajectories of the control movements for Subject 4.
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Figure D.4: Trajectories of the control movements for Subject 5.

143



Appendix ETrajectory of forearm controlmovements (orientation)The orientations of the control movements for forearm movements are shownhere for all subjects except subject 3 (this is shown in Figure 6.7.
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Appendix FTrajectory of upper arm controlmovements (orientation)The orientations of the control movements for the upper arm are shown herefor all subjects except subject 3 (this is shown in Figure 6.8.
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Appendix GVelocity of control (single step)movements
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Appendix HForearm angular velocity ofcontrol (single step) movements
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Appendix IUpper arm angular velocity ofcontrol (single step) movements
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Appendix JComparison of planningschemes for double stepmovements in two-dimensionalFick coordinatesThe following graphs show the predictions of the two dimensional models(in terms of �F and �F ), for the superposition scheme and the abort-replanscheme, compared with the experimental data. In the following graphs, redrepresents the experimental data, the dashed blue line the �rst control move-ment, the blue solid line the prediction of the superposition scheme and thegreen line the prediction of the abort-replan scheme.
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Figure J.1: Predicted and actual 2D Fick trajectories with large overlap(greater than 0.6) for the forearm for Subject 1
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Figure J.10: Predicted and actual 2D Fick trajectories with large overlap(greater than 0.6) for the upper arm for Subject 5
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Appendix KSummary of errors during 2DsuperpositionThese graphs show the mean (the height of bar graph) and the standarddeviation (the length of the error bar) for the two dimensional Fick coordinatesuperposition scheme (in blue) compared to an abort replan scheme (in red),divided into no or small overlap (N/S) - less than 0.2, moderate overlap (M)- between 0.2 and 0.6, and large overlap(L) - greater than 0.6. Each rowrepresents the ISI time shown next to it. The results are only shown forgroups where 3 or more trials are found.
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Figure K.1: Comparison of errors between the two-dimensional superpositionand abort-replan scheme for Subject 1 (left) and Subject 2 (right).
169



N/S M L
0

0.2

Forearm

50

N/S M L
0

0.2

Upper arm

N/S M L
0

0.2

300

N/S M L
0

0.2

N/S M L
0

0.2

100

N/S M L
0

0.2

N/S M L
0

0.2

400

N/S M L
0

0.2

N/S M L
0

0.2

150

N/S M L
0

0.2

N/S M L
0

0.2

550

N/S M L
0

0.2

N/S M L
0

0.2

200

N/S M L
0

0.2

N/S M L
0

0.2

700

N/S M L
0

0.2

N/S M L
0

0.2

Forearm

50

N/S M L
0

0.2

Upper arm

N/S M L
0

0.2300

N/S M L
0

0.2

N/S M L
0

0.2100

N/S M L
0

0.2

N/S M L
0

0.2400

N/S M L
0

0.2

N/S M L
0

0.2150

N/S M L
0

0.2

N/S M L
0

0.2550

N/S M L
0

0.2

N/S M L
0

0.2200

N/S M L
0

0.2

N/S M L
0

0.2700

N/S M L
0

0.2Figure K.2: Comparison of errors between the two-dimensional superpositionand abort-replan scheme for Subject 4 (left) and Subject 5 (right).
170



Appendix LComparison of planningschemes for double stepmovements in rotation vectorspaceThese graphs show rotation vectors during double step movements in com-ponents - rx (blue), ry(green) and rz(red). The dashed lines shows the ex-perimental data, the solid line the prediction with a second order surfaceDonders' constraint on orientation, the dotted line the prediction of a List-ing's law constraint on orientation (only the rx component shown) and thedotted-dash line the prediction for a second order surface constraint on co-ordinate velocity.
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Figure L.1: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the forearm for Subject 1.
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Figure L.2: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the upper arm for Subject 1.
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Figure L.3: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the forearm for Subject 2.
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Figure L.4: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the upper arm for Subject 2.174
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Figure L.7: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the forearm for Subject 4.
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Figure L.8: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the upper arm for Subject 4.
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Figure L.9: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the forearm for Subject 5.
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Figure L.10: Predicted and actual rotation vectors (in degrees) with largeoverlap (greater than 0.6) for the upper arm for Subject 5.
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Appendix MSummary of errors aftersuperposition in rotation vectorspaceThese graphs show the mean (the height of bar graph) and the standard de-viation (the length of the error bar) for the three dimensional rotation vectormodels compared with the actual data. Blue shows the superposition schemewith a second order surface Donders' law constraint, green is with a 
at List-ing's plane constraint, and red is when a coordinate velocity constraint isused. The results are divided into no or small overlap (N/S) - less than 0.2,moderate overlap (M) - between 0.2 and 0.6, and large overlap(L) - greaterthan 0.6. Each row represents the ISI time shown next to it. The results areonly shown for groups where 3 or more trials are found.
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Figure M.1: Comparison of errors between the three dimensional models forSubject 1 (left) and Subject 2 (right).
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Figure M.2: Comparison of errors between the three dimensional models forSubject 4 (left) and Subject 5 (right).
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