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Abstract

Human grasping and object manipulation require the coordination and

control of the contact points between the hand and the object, of the orienta-

tion, posture and impedance properties of the hand, and of the direction and

magnitude of the forces applied by the fingers. The objective of this thesis

was to understand some of the features of this complex system by develop-

ing models for the finger and the hand, and using these models to describe

the behaviors observed during grasping. We have aimed to use these models

to describe the kinematic and dynamic features of finger movements during

grasping, and to suggest the goals of the nervous system in selecting grasps

for actions.

A model has been described for the index finger, modeling it as a spring-

damper-mass system, as well as taking into account the effect of Coriolis and

centrifugal forces, and gravity. Some of the parameters of this model have

been derived based on a geometric model of the finger, and were compared

to the experimentally identified parameters, found in an experimental setup

involving perturbing the entire finger with a “tendon” attached to an ex-

oskeleton. Good agreement was generally found between the geometrically

modeled and experimentally derived inertia ellipses. Additionally, it was

found that using a full dynamic model of the finger sampled at many time

points models the fingertip force during movement significantly better than

a model of only the stiffness constructed from the total magnitude of the

applied force and the perturbation.

The grasps selected for different tasks on an object were compared. The

grasp Jacobian was constructed, as a function of the recorded posture, and

allowed quantification of the force and velocity transmission capabilities of

the grasp. Additionally, using a novel technique, the whole grasp stiffness

was estimated. The differences between the grasps selected were compared in

terms of these force and velocity transmission capabilities, and the stiffness.

Despite the large amount of variation observed in the selected postures, the

results show that some of these differences can be related to salient task
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requirements.

This technique was extended by comparing the grasps selected for par-

ticular tasks to a large number of computer generated grasps, each of which

have the same number of fingers grasp the same object in a feasible way. The

force and velocity transmission capabilities and the stiffnesses were used for

this comparison. A normalized compatibility score was computed to quantify

the relative compatibility of the selected grasps compared to the compatibil-

ity scores of the computer generated grasps. Grasps with mean normalized

compatibility scores significantly different from 0.5 were considered as can-

didates for quantities that may be optimized in the grasp selection process.

Several of these quantities were related to requirements of the tasks.

The trajectory of the index finger was modeled during grasping move-

ments. It was observed that the Cartesian arc length velocity profiles along

the fingertip path are invariant when they are normalized with respect to

time. The path of the fingertip was well modeled by two geometric models,

one based on finding the best-fit logarithmic spiral to the movement, and

the other one minimizing the integral of the weighted squared joint deriva-

tives along the path. Similar predictions were also found by minimizing the

integral of squared angular jerk. The predictive powers of these models was

similar when the inertia of the finger was changed by adding a weight to

the medial phalange, which was not the case for the minimum torque-change

model. Thus, for the finger, it appears that the path and velocity profiles

can be modeled independently.

Finally, two applications of this research have been presented. A teler-

obotics system based on recognizing the type of action was constructed. Also,

the potential use of the grasping models described here in order to aid in the

rehabilitation of grasping function was presented.
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Chapter 1

Introduction

The field of computational motor control seeks to understand how human

movement is performed, primarily by examining the output of the system,

namely, our movements. By presenting and evaluating models of how various

motor systems may work, insights can be gained into the principles that

the central nervous system (CNS) uses in planning multi-joint movements.

Apart from gaining a deeper understanding of our own brains, this field of

research can have practical implications for the understanding and treatment

of movement disorders, in the construction of prosthetics, and in robotics.

1.1 Grasping

Human grasping is an ideal model system for studying human motor control.

It is something that we perform all the time, albeit generally with little

conscious thought, but it is highly complex in that we must constantly select

from a very large range of possible hand configurations, which determine the

hand’s manipulation capabilities. The human hand has an amazing range

of abilities, ranging from the fine accuracy needed to thread a needle to the

large forces that can be applied by the hands to support the body in rock

climbing. Grasping is also difficult to learn - it takes many years for children

to be able to perform fine manipulation (for example, accurate drawing, or

opening a child-proof bottle), long after they can walk and talk. The ability

1
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to grasp is found in few animals, and only humans are able to grasp with

such a level of dexterity. By understanding the workings of the hand, we

may gain insights into the general principles used in motor planning that are

less apparent when studying simpler systems.

The focus of this thesis is on a behavioral study of grasping. While there

have been some insights recently into grasping from neural studies in humans

(Buxbaum et al., 2006) and monkeys (Raos et al., 2004, 2006), we are still far

from having the ability to deduce the notions of how grasping is performed

from such studies. Thus, behavioral research is the primary tool available

for inferring the way that the CNS performs grasping.

In this work, the hand is modeled in a similar way to which one might

model a robotic system composed of several manipulators acting together.

Although the dynamic properties of human muscles cannot be precisely mod-

eled as spring-damper systems, and our joints do not behave exactly as hinge

joints do, such modeling allows us to use the tools of robotics in the analysis,

and to probe deeper questions. Known biomechanical details are included in

the models.

We make the broad assumption that practiced human behavior, such as

grasping, is optimal in some sense. This is the underpinning of many models

in motor control, although there is significant disagreement on what quantity

is being optimized. Although some works have claimed that satisficing1 is

sufficient (Rosenbaum et al., 2001), we nevertheless use the assumption of

optimality because it seems likely that in highly skilled tasks such as grasping,

the CNS has reached optimal performance.

1Satisficing, rather than optimizing, is to plan for acceptable performance rather than
optimal performance
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1.2 Thesis outline

Chapter 2 presents a general overview of previous research on grasping, as

well as describing the biomechanical structure of the hand.

Chapter 3 examines the impedance properties of the index finger, which

are important for modeling object manipulation by the hand, through geo-

metric modeling of the inertia, and experimental estimation of the stiffness,

damping and inertia terms. A technique for interpolating grasp stiffness at

novel postures, based on measured grasp stiffnesses, is also presented.

Chapter 4 looks at how the location of the fingers on an object and the

hand posture are selected in order to perform different types of object ma-

nipulation tasks. The force and velocity capabilities and the stiffnesses of

grasps performing different actions on an object are compared, in order to

gain insights into what are important in grasp planning. Additionally, the

grasps selected are compared to the “optimal” grasps for force or velocity

production, or stiffness, in particular directions.

Chapter 5 presents several models for describing the motion of the fingers

during grasping. Some of the models are based on independent planning of

the path and velocity profiles along the path. The novel models are com-

pared with models presented in previous works. The fit of these models is

compared.

Chapter 6 presents two applications of the techniques developed in this

work. The first is a telerobotics project, where the goal of a grasp performed

by a human operator in a virtual reality environment is transmitted to a

robot, which achieves the same goal in a suitable way for its structure and

dynamic capabilities. The second application is the determination of the op-

timal grasps to use for different tasks when the hand has limited movement

capabilities, for potential use in rehabilitation.

Appendix A describes the calibration technique used with the CyberGlove.

Appendix B gives a full derivation of the grasp Jacobian, which is used

throughout the thesis.
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Chapter 2

Background

Grasp selection in humans is largely subconscious. Despite the lack of con-

scious attention we give to it, grasp selection in the kinematically redundant

system of the human hand poses a difficult problem, in that the requirements

of a grasp are not clearly specified and it is difficult to define how to generate

a grasp in order to best fulfill a given set of attributes. This epitomizes the

degrees of freedom problem of Bernstein (1967), due to the larger number of

degrees of freedom available in the hand than are necessary for stably grasp-

ing an object. In the field of robotics, a large body of literature deals with

this question of grasp synthesis (see Shimoga (1996) for a review), which is

a testimony to the complexity of the problem.

The study of grasping movements in humans has been mostly addressed

from the perspective of reach-to-grasp movements, which have been con-

sidered as consisting of two independent components (Jeannerod, 1981) al-

though several experimental studies have shown that external perturbations

affect both channels (Haggard, 1994; Soechting & Flanders, 1993). Other

studies of grasping movements have mostly focused on grasping kinematics

(Mason et al., 2001; Santello et al., 2002; Kamper et al., 2003) or on force dis-

tribution among different fingers during object manipulation demonstrating

the existence of different force distribution and coordination schemes such as

enslaving and force sharing (Zatsiorsky et al., 1998; Danion et al., 2003).

5
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Grasp selection There are many factors that influence us when selecting

the grasp to be used for a particular manipulation, and it is unclear which

variables should be used to define the goals of a grasp (Smeets & Brenner,

1999). The shape of an object clearly plays a role in determining the grasp,

but by itself is insufficient to fully describe the necessary grasp. The mass

and coefficient of friction of the object to be grasped will also affect the

movement (Pollick et al., 2000), for example, picking up the same bottle

when it is empty or full will involve different movement plans. Earlier studies

have shown that the kinematic properties of both arm transport and grasp

selection are influenced by the object and task properties (Marteniuk et al.,

1987; Jakobson & Goodale, 1991). Intrinsic object properties that cause a

particular type of interaction, known as affordances (e.g., the size, shape

or weight of an object), also affect the type of grasp that is selected. It

was found that all the affordances of an object and not only those directly

implicated influence grasp selection (Gentilucci, 2002).

Taxonomies To classify the large number of grasps used by humans, grasp

taxonomies have been defined. Napier (1993) divided grasps into power grips

and precision grips. A power grip involves contact between the object and

the surface of the fingers and the palm, and is usually used to constrain the

object so that it moves together with the hand. In contrast, a precision grip

is performed between the fingertips of the thumb and other fingers. The

precision grip can be used for manipulation of an object by the fingers.

Cutkosky (1989) defined a taxonomy of grasps categorized primarily ac-

cording to their function rather than their shape. The first division was

between a power grip and a precision grip. Further divisions in the taxon-

omy are based on the placement of the fingers (a compact, circular grasp or a

long, prismatic grasp), the number of fingers being used and the prehension

aperture. This taxonomy is shown in Figure 2.1.

Iberall (1997) divided hand postures during grasping into four categories,

grouped by oppositions. The categories were palm opposition (opposition of

the palm with some fingers), pad opposition (opposition only of the finger

tips), side opposition (opposition of the sides of the fingers) and opposition
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Figure 2.1: Grasp taxonomy defined in Cutkosky (1989).

against gravity. Combinations of these oppositions were also permitted.

Further grasp characterizations include that of Elliott & Connolly (1984),

which divided manipulative hand movements into simultaneous and sequen-

tial ones. A hierarchy was defined by further decomposition of object manip-

ulation movements, based on which fingers are involved and the similarity of

the movements between the fingers.

Motor primitives Grasp formation and manipulation require coordina-

tion of many degrees of freedom. Motor primitives, which are a basic set of

movements that might subserve as building blocks for more complex move-

ments, may present a simplifying strategy for grasp planning. Computation-

ally, they can be thought of as a set of movements that through combination

are sufficient to generate entire movements (Fod et al., 2002). Several dif-
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ferent approaches to the use of primitives in grasping have been considered

in robotics, where primitives have been proposed that operate in joint space

(Speeter, 1991) or in Cartesian task space (Fuentes & Nelson, 1998; Riley &

Atkeson, 2002).

Speeter (1991) defined a set of primitives for the Utah/MIT dextrous

hand. Each primitive is a coordinated set of joint motions to perform a cer-

tain task. New primitives can be defined as a linear combination of primitives,

and then motor programs can be defined as a sequence of such commands.

Fuentes & Nelson (1998) used a similar technique, but their primitives were

learned by minimizing an objective function for a given goal. Their primi-

tives were movements such as moving the fingertips along a certain axis or

rotating them. The robotic three-fingered hand, which was modeled as two

3 DOF fingers (using certain redundancies and assumptions), learned these

movements using the evolution strategy. These movements could be com-

bined manually to perform tasks using teleoperation, although no method

was given for finding the primitives automatically for a general task.

Ilg & Giese (2002) used spatio-temporal morphable models (STMMs)

as movement primitives. Prototypical movements were generated from the

average of several recorded movements, and the spatial and temporal shifts

from a primitive to a given movement are found by minimizing these shifts

under certain constraints. These primitives can then be used to generate

novel movements, for example, in a different style or with exaggeration.

One other prominent approach in robotics for programming robotic hands

to perform compliant tasks has been to specify the task frame in which the

manipulation can be defined and the constraints on forces and motions in

this frame (Mason, 1981; de Schutter & van Brussel, 1988).

Concerning primitives for human grasping, it has been suggested that

they may consist of stored postures (Rosenbaum et al., 1995, 2001; Meulen-

broek et al., 2001) . A movement between the start and end postures is then

computed (Rosenbaum et al., 2001). Smeets & Brenner (1999, 2002) claimed

that a much simpler model is sufficient for planning grasping movements.

Their model was based on determining the final locations of the fingertips of

the thumb and index finger on the object, and then planning the trajectory
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that takes the fingertips to those locations. In addition to describing the

kinematics of the movement, primitives may also define the applied forces

and the dynamic properties of the grasp.

Dimensionality reduction techniques The aforementioned taxonomies

suggested for human grasping may enable classification of the movements

into different subclasses, although it is unclear whether it is possible to de-

compose these grasps further into more elementary building blocks. In the

past few years, with the development of devices such as the CyberGlove (Im-

mersion), the finer kinematic details of human grasping have been studied.

In particular, a number of works have looked at the selection of finger tip

locations and joint angles. Principal Component Analysis (PCA) and related

techniques for dimensionality reduction have been employed for inferring the

underlying joint angle synergies during grasping (Santello et al., 1998; Ma-

son et al., 2001; Santello et al., 2002; Zacksenhouse & Marcovici, 2001). An

example of the first two principal components (PCs) for a grasping task is

presented in Figure 2.2.

Santello et al. (1998) used PCA to study the posture of the hand. They

studied the hand in terms of 15 joint angles. However, they only analyzed

the static hand posture at the end of the trial. They found that the first

two PCs could account for greater than 80% of the variation, but that higher

order PCs are required for more subtle differentiation between the postures.

In a later study, Santello et al. (2002) studied the patterns of covariance

between the fingers throughout the movements using PCA. In this case, the

PCs were a function of time of all of the joints, not one for each joint (as

was the case in Soechting & Flanders (1997), where each joint was consid-

ered separately). The first two PCs accounted for more than 70% of the

variation. The first PC described where the fingers extended and then re-

versed to flexion. The second PC only showed significant modulation late in

the movement (approximately 70% of the way through the movement) and

described all the fingers extending or flexing. Movements of single fingers

required further PCs.

A more recent study (Jerde et al., 2003) compared the use of PCA to
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PC1

PC2

Figure 2.2: The first two principal components (eigenpostures) for grasping
tasks. The data were collected with the CyberGlove in a toy experiment,
and multiples of the eigenpostures added to the mean posture are rendered.

the selection of a small subset of joint angles. They considered static hand

postures used for finger spelling in American Sign Language. Recognition of

these postures can be performed with a similar accuracy using an equivalently

sized subset of joint angles rather than a vector of weights of the PCs. They

suggest that the reduction in degrees of freedom is due to biomechanical and

neuromuscular constraints rather than synergetic control.

An alternative to PCA for automatically finding a lower-dimensional ex-

pression of hand movements is to use singular value decomposition (Mason

et al., 2001). Rather than finding principal components that describe the

entire movement, this work found a set of postural synergies, that through

combination could describe the posture of the hand. It was found that a small

number of “eigenpostures”, consisting of the Cartesian (x, y, z) coordinates
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of 21 markers on the hand, could be used to well describe the movement.

The first eigenposture explained on average 97.3% of the variation. The time

development of the eigenpostures can then be seen through the movements,

and were similar between grasps and between subjects. Although the higher

eigenpostures represented only a small amount of the variation, they still

contributed to the shape of the hand (rather than being noise).

A different approach was taken in Nölker & Ritter (2000), where the

grasp was specified by the finger tip positions, and the joint angles were

reconstructed using a Parameterized Self-Organizing Map.

Preshape A notion in simplifying grasp planning has been the use of pre-

shaping of the hand, that is, moving the hand into a posture with the fingers

more open than they need to be to grasp the object, but still close to the

desired posture. The preshape selected depends on the object’s parameters

such as size and shape (Arbib et al., 1985) and the goal of the task (Ansuini

et al., 2006). Grasp planning algorithms have been proposed based on pre-

shaping (Miller et al., 2003; Wren & Fisher, 1995), where after generating

the preshape based on the shape of the object or the task, the fingers then

close on the object.

Equilibrium Point Hypothesis The Equilibrium Point Hypothesis (Feld-

man, 1966) controls movement by appropriately selecting the muscle stiffness

and rest length properties. Gu & Ballard (2006) suggested a movement con-

trol strategy for grasping by specifying an equilibrium posture of the hand.

The equilibrium posture may actually have the fingers inside the object, in

which case the actual posture will have the fingers applying forces on the

object at the grasp points. By adjusting the stiffness values of the fingers,

different forces can be applied. Such models are advantageous in that they

can deal better with noise and errors in position, and guarantee object sta-

bility.

Robotic Grasp synthesis In the robotics literature, grasp synthesis is

usually achieved by optimizing some quality measure (Shimoga, 1996). Many
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of these measures are based on the grasp Jacobian, Gh, which defines the re-

lationship between the finger joint velocities, and the velocity of the object

being grasped. The grasp Jacobian can be visualized by means of the ma-

nipulability ellipsoid (Yoshikawa, 1985), which represents the transmission

properties of both velocities and forces between the joints and the object.

Object velocity can be optimally produced along the major axis of the ve-

locity transmission ellipsoid, and most accurately controlled along the minor

axis. The analogous force transmission ellipsoid can also be derived from

the grasp Jacobian. Chiu (1988) defined a measure known as the task com-

patibility index, which measures the transmission ratio of force or velocity

along the direction required by the task. This is calculated as the square of

the length of a vector in this direction from the center of the ellipsoid to the

surface of the relevant force or velocity transmission ellipsoid. For a given

task, Li & Sastry (1988) defined an ideal task ellipsoid whose shape (i.e.,

the relative lengths of the axes) is determined based on the relative force

requirements in the different directions.

Kim et al. (2004) defined a set of performance indices. These measures

are normalized by dividing them by the difference between the maximum and

minimum possible values and thus they are also non-dimensional. Different

weights can be given to the different indices depending on the task.

Impedance Grasping involves more than the placement of the fingers on

the object. Due to the redundancy of the hand, the same grasp points on an

object can in general be realized in many ways, thus influencing the stability

and manipulability of the grasp. Both the stability and the manipulability

of a grasp are affected by the grasp impedance. Impedance describes the

relationship between externally applied forces and motion. It consists of

a static component, the stiffness, which relates forces to displacements, and

dynamic components, the damping and inertia, which relate forces to velocity

and acceleration, respectively. The passive and active impedances of the

human hand help to deal with changes in grasping conditions (Kao et al.,

1997). Control of the dynamic behavior during manipulation requires control

of the impedance of the hand (Hogan, 1985a).
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Figure 2.3: The bones in the hand. Figure reproduced from Napier (1993).

Forces In addition to the selection of grasp points, hand posture and stiff-

ness, the distribution of forces applied by the fingers is controlled during

grasping. Several phenomena, including enslaving and force sharing, have

been observed (Zatsiorsky et al., 1998; Danion et al., 2003). Danion et al.

(2003) modeled these phenomena with the mode hypothesis, where a mode

is defined as the forces produced by all the fingers resulting from voluntary

force production in a single finger. Multiple finger force production can then

be modeled by the superposition of modes, with a weight factor dependent

on the number of fingers used.

2.1 Structure of the hand

The bones of the hand are shown in Figure 2.3. The bones of the fingers are

known as the phalanges, the bones of the palm are known as the metacarpals,

and the carpals are the bones of the wrist. The joints between the phalanges
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Figure 2.4: The palmar (left) and dorsal (right) view of the muscles in the
hand. Figure reproduced from Napier (1993).

are known as the distal and proximal interphalangeal joints, and the fingers

can be bent (flexed) or straightened (extended) at these joints. At the joint

between the phalanges and the metacarpals, known as the metacarpopha-

langeal joint, in addition to extension and flexion, side-to-side movements

can be performed. Movements away from a line going through the middle

finger are known as abduction, those towards it are known as adduction.

The muscles of the hand are shown in Figure 2.4. Most of the muscles

in the hand are attached near the elbow, and pass from the forearm to the

hand by tendons. These are known as the extrinsic muscles, and are divided

into deep tendons, which act mostly on the distal interphalangeal joint, and

superficial tendons, which act on the middle joints. Smaller intrinsic muscles,

originating in the hand, also play a role. Further details can be found in

Napier (1993). The thumb metacarpal joint, unlike the other fingers, is a

saddle joint, and can move in three directions (adduction-abduction, flexion-

extension, and medial-lateral rotation).

Figure 2.5 shows the tendons of the index finger. Each joint of the finger
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has several tendons attached to it. Table 2.1 summarizes these connections.

Figure 2.5: Tendons and intrinsic muscles of the index finger. Figure repro-
duced from Brook et al. (1995).

Joint Tendon and intrinsic muscles
DIJ Terminal extensor (TE)

Flexor digitorum profundus (FDP)
PIJ Extensor slip (ES)

Radial band (RB)
Ulnar band (UB)
Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

MPJ Extensor digitorum Communis (EC)
Extensor indicis (EI)
Radial interosseous (RI)
Ulnar interosseous (UI)
Lumbrical (LU)
Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

Table 2.1: Tendons and intrinsic muscles of the index finger connected to the
distal interphalangeal joint (DIJ), proximal interphalangeal joint (PIJ) and
the metacarpophalangeal joint (MPJ). Table reproduced from Brook et al.
(1995).
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Chapter 3

Hand impedance

3.1 Experimental estimation of fingertip im-

pedance

Nomenclature

θ Joint angles.

θ̇ Joint velocities.

θ̈ Joint accelerations.

τ Joint torques.

M̂ Manipulator inertia matrix.

B̂ Joint damping matrix.

K̂ Joint stiffness matrix.

Ĉ Joint Coriolis and centrifugal.

Ĝ Joint gravity effect.

M Endpoint inertia.

B Endpoint Damping.

K Endpoint Stiffness.

C Endpoint Coriolis and centrifugal.

G Endpoint gravity effect.

J Joint angles to endpoint Jacobian.

ci cos θi.

si sin θi.

Mi ith link inertia matrix.

li Length of the ith segment.

lci Length to segment center of mass.

ξi Twist of the i joint.

J b Body Jacobian.

mi Mass of the ith segment.

Ixi Segment moment of inertia about x axis.

Γijk Christoffel symbol.

Faf Force applied to artificial finger.

Faf Torque of artificial finger.

σ Fitting error.

ex Force prediction error in x direction.

N Number of samples.

17
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3.1.1 Introduction

A good estimate of the impedance properties of the fingers is essential for

modelling the human hand during grasping and manipulation, in particu-

lar, for predicting how the hand will interact with an object being grasped

(Kowadlo et al., 2005). Impedance, which describes the relationship between

externally applied forces and motion, consists of a static component, the

stiffness, which relates forces to displacements, and dynamic components,

the damping and inertia, which relate forces to velocity and acceleration re-

spectively. While estimation of stiffness and damping values requires either

experimental testing or an accurate muscle model, inertia can be calculated

using geometric modelling, as several studies have demonstrated for the hu-

man finger (Kamper et al., 2002; Grinyagin et al., 2005; Kowadlo et al., 2005).

However, there has been no experimental validation of the predicted finger

inertia values.

Earlier studies of upper limb impedance have focused mainly on mea-

surements and characterization of the arm stiffness field while maintaining

different arm postures in the horizontal plane (Mussa-Ivaldi et al., 1985;

Flash & Mussa-Ivaldi, 1990; Tsuji et al., 1995). While maintaining posture,

a manipulandum was used to introduce small displacements of the subject’s

hand in different directions. The resultant measured restoring forces and

end-point displacements were used to calculate the hand stiffness matrix and

ellipse (Mussa-Ivaldi et al., 1985) which is characterized by three parameters

- its size, shape and orientation. Dolan et al. (1993) and Tsuji et al. (1995)

extended this technique to estimate damping and inertia. Mussa-Ivaldi et al.

(1985) calculated the terms of the stiffness matrix using linear least squares

regression. In Tsuji et al. (1995), they estimated the stiffness, damping and

inertia terms by integrating twice the equations of motion (to avoid having to

take derivatives), then used linear least squares regression. Techniques have

also been developed for measuring stiffness during both loaded and unloaded

movements (Gomi & Kawato, 1996, 1997; Burdet et al., 2000).

Tee et al. (2004) presented a model of two dimensional arm dynamics,

including stiffness, damping and inertia terms. The stiffness was calculated
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by assuming that the joint stiffness is a linear function of joint torque. The

damping was assumed to be a non-linear function of the stiffness, and the

inertia was calculated based on the geometry of the limbs. The predictions

of the model agreed well with published findings from other papers. Burdet

et al. (2006) used a similar arm model to examine the stability of the arm,

which is important when interacting with certain tools or objects.

Human arm stiffness can be controlled depending on the task. Tsuji et al.

(2004) showed with a virtual tennis system that participants altered their

stiffness depending on the phase of the movement and the mass of the ball.

Darainy et al. (2004) demonstrated that subjects learned to alter their arm

stiffness in a task requiring posture maintenance during force application.

When considering grasping in three dimensions, a stiffness ellipsoid, rather

than an ellipse, is appropriate. Lin et al. (2000) defined a frame-invariant

stiffness quality measure which quantifies the grasp stability. However, this

measure can not take into account task specific stiffness requirements.

Compared to studies of the whole arm stiffness, relatively few studies have

focused on finger and hand stiffness. Hajian & Howe (1997) measured the

impedance properties (i.e., stiffness, viscosity and inertia) of the outstretched

index finger’s metacarpophalangeal (MPJ) joint. Milner & Franklin (1998)

studied the effects of finger posture and the direction of the voluntary forces

on the resultant finger stiffness ellipses. Unlike for the stiffness of a single

joint, where a monotonic relationship was found between joint stiffness and

joint torque (Hajian & Howe, 1997), no systematic relationship was found for

the whole finger. These authors concluded that finger stiffness can most easily

and robustly be controlled by altering the finger posture. Kao et al. (1997)

measured the stiffness of the thumb and index finger in a plane. The two-

dimensional stiffness of a grasp composed of these two fingers was calculated,

and measures from the robotics literature were used to predict the properties

of the grasp under external loads. Jindrich et al. (2004) estimated the joint

stiffness and damping of the finger during typing, by measuring the joint

angles of the finger with miniature goniometers, and the force applied at the

endpoint by the finger. They found that the stiffness and damping differed

between the loading and unloading stages of the movement.
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The stiffness of an external object being grasped was measured by Buttolo

(1996) and Van Doren (1998). These calculations were used to compare the

stiffness properties of different finger placements (Buttolo, 1996) and the

effect of finger span and grasp force (Van Doren, 1998).

A dynamic model of the index finger was constructed in Brook et al.

(1995), where they took into account all the muscles acting on the joints of

the finger. By calculating the force generated on the joints by the muscles,

together with some additional constraints, the model can predict the forces

that should be applied by each muscle given the joint driving movements.

Sancho-Bru et al. (2001) also presented a model for predicting the muscle

forces when given the posture of the finger during the movement.

In this work, we experimentally identify the endpoint inertia, damping

and stiffness of the index finger. The experimentally estimated inertia is

compared to the predictions of a geometric model. The experimental mea-

surements of impedance are calculated using a novel technique by applying

known force perturbations to the index finger with the CyberGrasp (Immer-

sion) and measuring the resultant acceleration, velocity and displacement of

the fingertip.

3.1.2 2D Dynamic equations of the index finger

The index finger can be modeled as an open-chain manipulator, as shown

in Figure 3.1, where it is assumed that the combined effect of the muscles

acting on each joint can be modeled in a similar way to a spring-damper

system (Hogan, 1985b; Dolan et al., 1993). The model used here is two

dimensional - the abduction / adduction of the metacarpophalangeal joint

is not considered. In addition to the spring and damper terms, the inertia,

Coriolis and centrifugal effects and gravity are included, giving the model

M̂(θ0)θ̈ + Ĉ(θ0, θ̇)θ̇ + B̂(θ0)θ̇ + K̂(θ0)(θ − θ0) + Ĝ(θ0) = τ (3.1)

where M̂ is the inertia matrix, Ĉ the Coriolis and centrifugal effects, B̂ the

damping matrix, K̂ the stiffness matrix and Ĝ the gravity term, in joint

coordinates. θ is the vector of joint angles and τ the vector of joint torques.
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Figure 3.1: The 2D model of the fingers used in this chapter.

The twists ξ representing the three joints of the finger can be written as

ξ1 =



0

0

0

0

0

1


, ξ2 =



0

−l1

0

0

0

1


, ξ3 =



0

−l1 − l2

0

0

0

1


.

The body Jacobians for each of the links will then be

J b
sl1(0) =



0 0 0

lc1 0 0

0 0 0

0 0 0

0 0 0

1 0 0


, J b

sl2(0) =



s2l1 0 0

c2l1 + lc2 lc2 0

0 0 0

0 0 0

0 0 0

1 1 0


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J b
sl3(0) =



s3l2 + l1s23 s3l2 0

lc3 + c3l2 + l1c23 c3l2 + lc3 lc3

0 0 0

0 0 0

0 0 0

1 1 1


The link inertia matrix Mi of link i is given by (Murray et al., 1994)

Mi =



mi

mi 0

mi

Ixi

0 Iyi

Izi


(3.2)

where mi is the mass of the ith segment of the finger, and Ixi, Iyi and Izi

are the moments of inertia about the x, y and z axes of this segment. In

order to find the inertia matrix of the chain, the link inertia matrices need

to be transformed into the appropriate coordinate system using the body

Jacobians for each link:

M̂ =
∑

i

(
J b

sli(0)

)T
MiJ

b
sli(0)

(3.3)
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The inertia matrix can then be determined by evaluating Equation (3.3):

M̂1,1 = (2lc3c3l2 + l22 + l21 + 2lc3l1c23 + l2c3 + 2l2l1c2)m3

+ m1l
2
c1 + Iz1 + Iz2 + Iz3 + 2m2c2l1lc2 + m2l

2
c2 + l21m2

M̂1,2 = (l22 + l2c3 + 2lc3c3l2 + lc3l1c23 + l2l1c2)m3

+ m2c2l1lc2 + m2l
2
c2 + Iz2 + Iz3

M̂1,3 = (lc3 + c3l2 + l1c23)m3lc3 + Iz3

M̂2,2 = (l22 + l2c3 + 2lc3c3l2)m3 + m2l
2
c2 + Iz2 + Iz3

M̂2,3 = (lc3 + c3l2)m3lc3 + Iz3

M̂3,3 = m3l
2
c3 + Iz3

(3.4)

The other three terms of the inertia matrix can be found by the symmetry

property of the inertia matrix.

The Coriolis and centrifugal forces can be computed from the partial

derivatives of the inertia matrix (Murray et al., 1994):

Ĉij(θ, θ̇) =
3∑

k=1

Γijkθ̇k =
1

2

3∑
k=1

(
∂Mij

∂θk

+
∂Mik

∂θj

− ∂Mkj

∂θi

)
θ̇k

The terms of Ĉ were calculated to be

Ĉ1,1 = −θ̇3l1(m2s2lc2 + m3l2s2 + m3s23lc3)θ̇2 − θ̇2
3m3(lc3s3l2 + l1s23lc3)

Ĉ1,2 = −θ̇3l1(s2m2lc2 + m3l2s2 + s23m3lc3)θ̇1

− θ̇3(l1θ̇2m3l2s2 + θ̇2m3l1s23lc3 + θ̇3m3lc3s3l2 + θ̇2m2s2l1lc2 + θ̇3m3l1s23lc3)

Ĉ1,3 = θ̇3(−m3lc3(s3l2 + l1s23))θ̇1 + θ̇3(−m3lc3(θ̇2 + θ̇3)(s3l2 + l1s23))

Ĉ2,1 = θ̇3(m2s2l1lc2 + m3l1l2s2 + l1s23m3lc3)θ̇1 + θ̇3(−θ̇3m3s3l2lc3)

Ĉ2,2 = −θ̇2
3m3s3l2lc3

Ĉ2,3 = −θ̇3(m3s3l2lc3)θ̇1 − θ̇3(m3s3l2lc3(θ̇2 + θ̇3))

Ĉ3,1 = θ̇3(m3lc3(s3l2 + l1s23))θ̇1 + θ̇3(θ̇2m3s3l2lc3)

Ĉ3,2 = θ̇3(m3s3l2lc3)θ̇1 + θ̇3(θ̇2m3s3l2lc3)

Ĉ3,3 = 0
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The effect of gravity on the joints can be considered by taking the par-

tial derivative of the potential energy with respect to the joint angles. The

potential energy is dependent on the height, given by the −y value:

V = m1gh1(θ) + m2gh2(θ) + m3gh3(θ)

= −m1gs1lc1 −m2g(s12lc2 + s1l1)−m3g(s123lc3 + s12l2 + s1l1)

The partial derivate Ĝ = ∂V
∂θ

was computed to be

Ĝ1 = −g (m1c1lc1 + m2(c12lc2 + c1l1) + m3(c123lc3 + c12l2 + c1l1))

Ĝ2 = −g (m2c12lc2 + m3(c123lc3 + c12l2))

Ĝ3 = −gm3c123lc3

These terms now need to be converted into Cartesian endpoint coordi-

nates, using the Jacobian J , which is the mapping from joint angles to end-

point (this is not equivalent to the body Jacobians). The inertia M , Coriolis

and centrifugal effects C, effect of gravity G and force F , all as viewed in

endpoint coordinates, are given by (Dolan et al., 1993; Murray et al., 1994)

M =J−T M̂JT

C =J−T

(
ĈJ−1 + M̂

d

dt
(J−1)

)
G =J−T Ĝ

F =J−T τ

(3.5)

The motion of the endpoint can then be modeled as

M(θ0)ẍ(t)+C(θ0, θ̇(t))ẋ(t)+B(θ0)ẋ(t)+K(θ0)(x(t)−x0)+G(θ0)−F (t) = 0

(3.6)

The terms for endpoint damping B and stiffness K will only be estimated

based on the experimental endpoint data, and not from the respective joint

damping and joint stiffness, as we have not implemented a model for pre-

dicting these values.
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3.1.3 Methods

Experimental setup

Movements of the index finger were recorded simultaneously by a CyberGlove

(Immersion) and an Optotrak (Northern Digital). The subjects wore a Cy-

berGrasp (Immersion) exoskeleton over the CyberGlove. The CyberGlove,

which was calibrated as described in Appendix A, measured three joint an-

gles of the index finger (metacarpophalangeal, proximal interphalangeal and

distal interphalangeal joints) at 90Hz. Since this sampling rate is too low to

accurately model the fingertip acceleration, which is required in the inertia

calculations, the Optotrak was also used. Five infrared markers were placed

on the exoskeleton and on the index finger, as shown in Figure 3.2, and were

sampled at 300Hz.

The base of the CyberGrasp was attached with straps to the back of the

hand, with finger loops placed on the medial phalanges and force applicator

rings placed over the fingertips. String “tendons” extend from the force

applicator rings to the actuator enclosure located in a box on the table,

which in turn is connected to a controlling computer. Through application of

tensions in the tendons, force (updated at 1000Hz) is applied to the fingertips.

The CyberGrasp was calibrated for each subject before use, in order to create

a mapping between the joint angles of the hand and the extension of the

“tendons”. The tendons are maintained taut when no forces are applied, so

as to reduce delay between force application and movement.

CyberGrasp force calibration

The forces that the CyberGrasp produce are controlled by sending commands

through the network to the CyberGrasp controller. It is important to know

the relation between the commands sent, and the actual force produced by

the tendons of the CyberGrasp, as this is required in the inertia calculations.

In order to determine this force as a function of time, an artificial finger was

built and used. This finger inside the CyberGrasp is shown in Figure 3.3.

The artificial finger had a single joint with a spring. The spring constant

(0.2618 Nm/rad) was determined by applying known forces to the finger
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Marker 1
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Marker 4

x

y

Marker 2

Marker 5

Figure 3.2: Placement of the five Optotrak IRED markers on the exoskeleton
and index finger loop. Markers 1 and 2 are fixed relative to the palm and
define the x axis, while the y axis is perpendicular to the x and lies in the
plane of markers 1,2 and 3. Marker 4 was considered the location of the
fingertip, and the force was assumed to be applied along the line from maker
4 to marker 5.

and measuring the angular displacement with the Optotrak. The force-time

profile of the artificial finger was then determined by modeling the torque of

the joint τaf using the dynamic equations of the finger, assumed to be

τaf = Iθ̈(t) + Kθ(t) + G(t) (3.7)

The force at the point of force application was then calculated from

|Faf (t)| =
|τaf |
|~r| sin θ

(3.8)

where r is the vector towards the point of force application, and θ is the

angle between ~r and F , which is the equivalent to the angle between the line
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~r

~Faf

θ

Figure 3.3: The artificial finger used to determine the force profile of the
CyberGrasp. Faf is the force applied by the CyberGrasp on the artificial
finger, and ~r is the position of the point of force application relative to the
joint, as specified in Equation (3.8)

joining markers 3 and 4, and the line joining markers 4 and marker 5 (as

shown in Figure 3.3).

The “expected” force Fex is the force command given to the CyberGrasp.

Then the normalized force profile, defined as Faf (t)/Fex, was approximated

by a 5th order polynomial for the first 0.035s:

F (t) = −1.29t4 + 0.97t3 + 1.83t2 − 0.09t− 0.08 (3.9)

This polynomial is plotted in Figure 3.4. The force profile does not converge

to a constant value during the relatively short duration of force application

(although it does eventually), however this does not affect the results, because

the time window modeled is the same as the one used in the experiment

described below.
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Figure 3.4: The normalized force profile (actual force divided by expected
force) of the CyberGrasp acting on an artificial finger, modeled using Equa-
tion (3.7). The blue line shows the mean of the normalized force, the green
line shows the mean plus or minus one standard deviation, and the red line
is the polynomial fit to the data (Equation (3.9)).

Experimental procedure

Three male volunteers participated in the experiment. The subject sat at a

table with his right forearm and palm resting on a stand. A triangular wedge,

with three points marked on it, was attached to the table under the index

finger (see Figure 3.5). During each set of measurements, the subject placed

his fingertip on one of the three marked points. The points were selected to

span a range of fingertip postures while ensuring that no other part of the

finger contacted with the wedge. In each posture, the finger was perturbed

by the CyberGrasp fifteen times in the plane containing the major axes of the

proximal, medial and distal phalanges, with forces between 1N and 2N for

30ms each. The force was exerted for 30ms to avoid a change in impedance

due to activation of the stretch reflex (a response to change in muscle length),

the cutaneous slip reflex or voluntary muscle contraction. The perturbations

were performed with the fingertip placed, in order, at locations 1, 2, and 3,
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30 deg.

1
2

3

Figure 3.5: The triangular wedge was attached to the table. The points
marked indicate the locations where the subjects were required to place their
fingertips during the recordings.

and then repeated. Due to the different sizes of the fingers of the subjects,

the postures used at the different locations differed between the subjects.

Data Analysis

The Optotrak software was used to obtain the 3D location of each of the

markers. The positions of the markers were smoothed using cubic smoothing

splines. The position of fingertip (marker 4) was calculated in the exoskeleton

frame (x,y), as shown in Figure 3.2. These axes were selected to be parallel

to the axes used in describing the joint locations from the CyberGlove data.

The motion of the fingertip under small perturbations from rest was mod-

eled using Equation (3.6). While the inertia M , damping B and stiffness K

are modeled as functions of the posture θ0, the Coriolis and centrifugal forces

C and the gravity term G are also a function of the joint velocity.

A cubic smoothing spline was fit to x − x0, which allowed the values of

x − x0, ẋ and ẍ to be calculated at each time step. The values for all the

external force levels were combined into one matrix. Perturbations that did

not cause the finger to move were not included in the analysis. As the size

of the angular perturbations was of a similar magnitude to the resolution of

the CyberGlove (≈ 0.5-1.0 degrees), a cubic smoothing spline was fitted to

the joint angles, to ensure smooth estimations of θ and θ̇. These values were

used to calculate C and G.



30 CHAPTER 3. HAND IMPEDANCE

It was planned to estimate the impedance parameters M ,B and K using

a linear least squares optimization, by minimizing the square of the left hand

side of equation (3.6). However, due to the fact that all the forces applied

and the subsequent displacements at each posture were in relatively similar

directions, the derivation of M , B and K using this technique was not robust.

Hence, additional constraints were applied. From Equation (3.4), it can be

observed that M̂3,3 (of the joint inertia matrix) is not dependent on the joint

angle, and thus should be constant for all the postures. This element of the

matrix relates the torque at the third joint (the distal interphalangeal joint)

to the angular acceleration at the this joint, and so is independent of the

posture. The joint inertia matrix M̂ can be calculated from the Cartesian

inertia matrix from:

M̂ = JT MJ (3.10)

where J is the Jacobian of the mapping from joint angles to Cartesian end-

point, which will depend on the posture. It can also be observed from Equa-

tion (3.4) that M̂1,1 > M̂1,2 > M̂1,3. This constraint was also included in the

optimization.

Additionally, as inertia matrices should be positive definite, constraints

were added to enforce this, namely that M is symmetric, that the largest

element of M is on the diagonal, and that the diagonal elements are positive.

Similar constraints were placed on the stiffness matrix K.

The impedance properties M ,B and K of all six sets of recordings were

derived simultaneously using non-linear optimization where the cost function

consisted of both the square sum of the left hand side of (3.6), and terms

penalizing the constraints described above with appropriate scale factors.

The starting point for the optimization of the inertia was an ellipse with

its major axis parallel to the long axis of the distal phalange, while for the

stiffness the starting point was the result of the first order stiffness estimation.

The use of these additional constraints was successful in producing inertia

estimations that were similar to the geometrically predicted values.

The “geometrically predicted” inertia was calculated by converting the

manipulator inertia matrix (Equation (3.4)) to the endpoint inertia matrix,
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using Equation (3.5):

M = J−T M̂J−1

where J−T = (J−1)
T
. It should be noted that this equation requires using

the pseudo-inverse, because J is not square, and so this may introduce errors.

However, it is easier to compare the predictions and experimental results in

Cartesian space.

Measurement of fitting error

The average fitting error (between the force predicted using the model, and

the measured force) was calculated in a similar way to that used in Dolan

et al. (1993):

σ =

√
eT

x ex

N
+

√
eT

y ey

N
(3.11)

where ex and ey are the differences between the geometrically predicted and

measured forces in the x and y directions, and N is the number of samples.

Five models were considered, with the parameters being estimated shown in

bold:

1. The full model (Equation (3.6))

M(θ0)ẍ(t)+C(θ0, θ̇(t))ẋ(t)+B(θ0)ẋ(t)+K(θ0)(x(t)−x0)+G(θ0)−F (t) = 0

2. The full model, but without the gravity, Coriolis and centrifugal terms,

i.e.

M(θ0)ẍ(t) + B(θ0)ẋ(t) + K(θ0)(x(t)− x0)− F (t) = 0 (3.12)

3. A second order model, where the geometrically predicted inertia is used,

and the stiffness and damping terms estimated from the experimental

data:

M(θ0)ẍ(t) + B(θ0)ẋ(t) + K(θ0)(x(t)− x0)− F (t) = 0 (3.13)
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4. A first order model, i.e., just stiffness

K(x(t)− x0)− F (t) = 0 (3.14)

5. A first order model where only the total magnitude of force and dis-

placement were used:

K(xf − x0)− F = 0 (3.15)

where K was fit using the total displacement and force applied for each

perturbation (rather than at each sample point, as was performed for

the other models).

The differences between the geometrically predicted and experimentally

identified inertia ellipses were calculated using the same error measure, where

the force required to accelerate the finger due to the inertia was compared

between the geometrically predicted and experimentally identified inertia

values. In this case, the force vector was that which would be produced by

values of ẍ uniformly sampled from a rotating unit input, sampled at 100

points, i.e.

FM = Mẍ, ẍ =

[
cos φ

sin φ

]
, φ = [0,

2π

99
, . . . , 2π]

Reconstruction of trajectories

In order to examine the differences between the geometrically predicted and

experimentally estimated inertia matrices, the trajectories of the fingertip

were reconstructed using the equation of motion of the finger (Equation

(3.6)). The fingertip trajectory was reconstructed using both the experi-

mentally derived and geometrically predicted inertia matrices (in addition

to the experimentally determined matrices for the other quantities). It was

assumed that the fingertip position could be modeled by a 5th order polyno-
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mial, with the position, velocity and acceleration initially zero, i.e.,

x− x0 =

[
a

d

]
t5 +

[
b

e

]
t4 +

[
c

f

]
t3

ẋ =

[
5a

5d

]
t4 +

[
4b

4e

]
t3 +

[
3c

3f

]
t2

ẍ =

[
20a

20d

]
t3+

[
12b

12e

]
t2+

[
6b

6e

]
t

The stiffness and damping matrices used were those estimated from the ex-

perimental data. For the inertia matrix, both the experimentally derived,

and geometrically predicted matrices were used. The polynomial parameters[
a b c d e f

]
were then determined by substituting the inertia parame-

ters, and (x−x0), ẋ and ẍ into equation (3.6), and minimizing the error using

a non-linear least squares algorithm (implemented in Matlab). The square

of the acceleration was also added to the cost function to ensure reasonable

trajectories.

3.1.4 Results

The average fitting errors for the five models are shown in Table 3.1. Gener-

ally, the errors for all the models are relatively small when compared to the

magnitude of the forces involved (1-2N). The first order model, when only

the magnitude of the displacement and the force are considered, performed

much worse than the other models. The other four models compared did

not differ significantly across all subjects and postures (according to paired

t-tests, at the 0.05 significance level). The remainder of the results presented

refer to the fit of the full model (Equation (3.6)).

The inertia ellipses calculated from the experimental data, and the inertia

ellipses predicted from the geometric model are shown together in Figure 3.6

for the three subjects, at the three different locations (for the second repe-

tition). The ellipses are plotted at the end of the finger. The geometrically

predicted and experimentally estimated inertia ellipses are generally of sim-
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Model Error (×10−2N)
Subj. Posture (3.6) (3.12) (3.13) (3.14) (3.15)

1 1 1.26 1.27 1.15 1.25 8.49
2 1.71 1.72 1.64 1.96 12.27
3 2.34 2.45 1.81 6.58 10.45

2 1 7.93 7.91 7.55 8.09 47.67
2 3.52 3.51 2.96 2.90 21.71
3 1.10 1.05 1.26 1.06 7.22

3 1 1.32 1.34 1.26 1.16 7.14
2 1.36 1.34 1.23 1.28 8.83
3 1.63 1.45 1.03 0.86 5.39

Table 3.1: Fitting errors for the five models for three subjects. The five
models are the full model (Equation (3.6)), the full model without the gravity,
Coriolis and centrifugal terms (Equation (3.12)), a second order model using
the geometrically predicted inertia (Equation (3.13)), a first order model
(Equation (3.14)), and a first order model using total displacement and the
applied force (Equation (3.15)). Standard deviations are not shown because
these are the errors from a single comparison.

ilar size, shape and orientation although some differences between the two

sets are observed. In the third posture (where the finger is most extended),

the ellipses are elongated. As the finger becomes more extended, the inertia

becomes closer to the inertia that would be observed if the entire finger was

one long phalange, in which case, the inertia ellipse would have no width,

only a length.

For subject 2, posture 1, the ellipse predicted from the geometric model is

quite different to the ellipse from the experimental data. The poor similarity

may be due to the relatively small number of usable force / displacement

trajectories that were available for the calculation (because the finger did

not move during most of the force applications).

The parameters of the ellipses: the angle of the major axis, the shape

(ratio of the length of major to minor axis) and the size (the area of the

ellipse) are detailed in Table 3.2. There are no errors shown for these values

because for each subject at each posture, all the recorded movements are

used in generating a single inertia ellipse.
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Figure 3.6: Experimentally estimated (black) and geometrically predicted
(red) inertia ellipses of the index finger, plotted at the fingertip. The second
repetition, at three locations, is shown.

Figure 3.7 and Figure 3.8 show the damping and stiffness ellipses respec-

tively from Equation (3.6), that are calculated from the experimental data.

Subject 1 Subject 2 Subject 3
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Figure 3.7: Experimentally estimated damping ellipses of the index finger.

Figure 3.9 shows the reconstructions of the position, velocity and accelera-

tion of the endpoint, based on the geometrically predicted and experimentally

calculated inertia. The experimentally calculated damping and stiffness were

used in both cases. These reconstructions were compared to the actual posi-

tion, velocity and acceleration. These reconstructions can help to understand

the quality of the model. While the reconstructions using the experimental

and geometrically predicted inertia matrices predict well the displacement,

larger errors are observed in the velocity and acceleration beginning around
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Subj. Posture Angle (deg.) Shape Size (×10−4) Error
Pred. Exp. Pred. Exp. Pred. Exp. (×10−3N)

1 1 63.32 57.33 6.58 8.21 0.21 0.19 0.25
2 47.53 33.18 10.90 14.34 0.34 0.35 0.79
3 26.99 15.48 27.80 9.62 0.82 3.35 1.61

2 1 93.80 -51.99 9.52 6.28 0.44 0.57 1.64
2 75.76 70.83 8.82 9.79 0.41 0.43 0.29
3 55.50 42.43 13.91 184.25 0.64 0.03 1.01

3 1 70.43 65.81 8.01 29.67 0.22 0.05 0.23
2 56.23 51.96 15.28 81.80 0.40 0.06 0.27
3 18.85 16.64 96.99 148.37 2.51 0.91 3.84

Table 3.2: Parameters of the experimentally estimated and geometrically
predicted inertia ellipses of the index finger. The parameters are the angle
of the major axis, the shape (ratio of the length of major to minor axis) and
the size (the area of the ellipse). The last column shows the error between
the forces that would be produced by a rotating unit input for the experi-
mentally estimated and geometrically predicted inertia matrices, calculated
with Equation (3.11).
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Figure 3.8: Experimentally estimated stiffness ellipses of the index finger.

halfway through the movement. Also, the predictions for the third posture,

where the finger is more extended than in the other postures, are worse.

Finally, the 3D inertia ellipsoids for all the fingers are shown, using similar

techniques, for a task of lifting a cup, in Figure 3.10. As can be observed, the

inertia ellipsoids vary significantly in their size, with the thumb having the

largest inertia ellipsoid, and the orientation is a function of the posture of

the finger. Thus, the total inertia of the grasp can be controlled by changing
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0.01N radius

0.01N radius

Figure 3.10: Inertia ellipsoids for all the fingers plotted at the fingertips, for
the task of lifting a cup, shown from two views. A sphere with radius of
0.01N is shown for reference.

the hand posture.

3.1.5 Discussion

In this section, we have experimentally estimated the impedance properties of

the human index finger. The calculated inertia values were generally similar

to those predicted by a geometric model. The differences between them

were quantitatively measured in terms of the average difference in the force

to accelerate the fingers for a unit acceleration (over all angles), and were

found to be small. It was possible to reconstruct with reasonable accuracy

the movements of the fingers when perturbed using the derived parameters.

The full impedance model of the finger did not predict the fingertip force

significantly better than a first order model, as measured by the fitting error.

However, for an accurate model, it was important to model the displacement

and force at many time points, rather than only using their total magnitude.

While some success was observed in using this method for estimating the

endpoint impedance of the fingertip, it is not an ideal technique, due to the

fact that the perturbations on the finger are in a similar direction. This

likely led to the failure of a simple least squares technique to estimate the
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inertia terms for the finger. This problem is illustrated in Figure 3.11. As

the provided data points are all close to one another, and there is some error

in their measurement, there are many inertia ellipses that could fit through

these points. The additional constraints applied in this paper restricted the

allowable ellipses to those that satisfy properties of inertia ellipses (such as

being positive definite). Ideally, the perturbations on the finger should be

applied very accurately and in all directions.

Fy

Fx

Figure 3.11: The black dots show the forces for a unit displacement. Several
possible ellipses that could be fit to these noisy points are shown. To iden-
tify the “correct” ellipse, either forces in other directions are necessary, or
constraints must be placed on the types of ellipses that are acceptable.

The observed differences in the reconstruction of the trajectories (Fig-

ure 3.9) may have be due to the non-symmetry found in some of the iner-

tia matrices. This lack of symmetry may be due to additional terms that

should be taken into account when modelling the fingers. The inertia of

the glove may have contributed to this error. Also, the greater errors in

velocity and acceleration suggest that there may be errors in modelling the

velocity-dependent phenomena, although centripetal and centrifugal forces

were taken into account. This may also be partly related to wearing the

glove during the measurements.

The inertia values found in this study were similar to those presented in

Hajian & Howe (1997), although they considered extension of the metacar-

pophalangeal joint, whereas in this work we considered also extension of the
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Figure 3.12: Force components in the x direction (left graph) and y direction
(right graph), due to inertia (red), damping (green), stiffness (black) and
total force (blue) for a typical force perturbation.

interphalangeal joints. This work extends the stiffness measurements of Kao

et al. (1997) by including damping and inertia terms, and taking into account

dynamic effects.

Figure 3.12 shows the relative magnitude of the contributions of inertia,

damping and stiffness to the total force for a typical movement. The devia-

tions between the actual force and the predicted force in the graph are due

to the errors in the model, Coriolis and centrifugal effects and gravity effects.

The effect of inertia on the total force is much smaller than the effect of stiff-

ness, and it should also be noted that these movements have much higher

acceleration than is typical in natural movements. So for many applications,

modelling only the stiffness may be sufficient, although for greater accuracy,

particularly with fast movements or light objects, the effects of damping and

inertia should also be considered.

Based on the findings of this section, it seems reasonable to use such geo-

metric models for estimating the inertia of the fingers, from which the inertia

of the hand can be predicted. The technique presented has applications in

modeling the interaction of the fingers with different objects (such as when

typing or piano playing), in accurately modeling human grasping (such as in

Kowadlo et al. (2005)) and for stiffness estimation.
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3.2 Grasp stiffness estimation

The stiffness of a grasp is dependent on the muscle activation, as well as

the posture of the hand. For the arm, it has been shown that the posture

has a strong influence on the endpoint stiffness (Mussa-Ivaldi et al., 1985),

and it is expected that a similar statement is true for the fingers. In this

section, a technique for interpolating stiffness values for unmeasured finger

postures based on stiffness measurements at known postures is presented.

This technique is used later in the work to analyze the quality of computer

generated grasps.

In this section, for estimating the finger stiffness KC , a simple first-order

impedance model of the fingers was used:

F = KCdX (3.16)

While the grasp was held at a particular posture, the fingers were per-

turbed and the change in position recorded using the CyberGlove. The stiff-

ness was calculated using an optimization procedure to find the symmetric

matrix KC that satisfies Equation (3.16) with the smallest error.

The endpoint stiffness is related to the joint stiffness by (Hogan, 1985b):

Kθ = JT KCJ (3.17)

where J is the Jacobian that converts from joint velocities to fingertip ve-

locities. The Jacobian for the finger, modeled as a three link manipulator, is

given by

J =

[
−l3s123 − l2s12 − s1l1 −l3s123 − l2s12 −l3s123

l3c123 + l2c12 + c1l1 l3c123 + l2c12 l3c123

]

From analysis of experimental data, Kamper et al. (2002) found that the

relationship between a joint angle and the joint’s stiffness can be reasonably

modeled by a quadratic equation. Based on this, the relationship between

the joint angles and the joint stiffnesses, calculated from Equation (3.17) was
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modeled in this way, where the coefficients of the quadratic equation were

determined using robust linear regression (implemented using Matlab).

The transformation of the stiffness to the endpoint from joint stiffness

requires using the pseudo-inverse because the Jacobian J is not square:

KC = J−T KθJ
−1 (3.18)

Using the Moore-Penrose inverse gave poor results, in that the order of

magnitude of the endpoint stiffness matrix was several times larger than typ-

ical values. Instead, an optimization procedure is used, where the endpoint

stiffness of the novel posture was required to be symmetric, and “close” to

the endpoint stiffness of the closest recorded posture.

K∗
C = min

KC

(JT KCJ −Kθ)
2

+ 104
(
(KC1,1 −KCn1,1)

2 + (KC2,2 −KCn2,2)
2 + (KC1,1 −KCn1,2)

2
)

(3.19)

The last term in Equation (3.19) prevented unrealistically large values of

the stiffness matrix. The minimization was implemented using the optimiza-

tion toolkit of Matlab.

The technique described above was verified using known endpoint stiffness

matrices, and was used in later sections to estimate the stiffnesses of the

fingers at novel, unmeasured postures, from which the grasp stiffness could

be derived.



Chapter 4

Grasp selection

Nomenclature

Gh Grasp Jacobian.

ẋo Object velocity.

θ̇ Joint velocities (of the fingers).

Vf Fingertip velocity.

Jf Finger Jacobian.

Fci Force on object from contact i.

fci Force applied by finger i.

Bci Soft finger constraint.

µ Coefficient of friction.

γ Coefficient of torsional friction.

G Grasp map.

Fo Force applied on the object.

τo Torque applied on the object.

K Stiffness.

Kext Stiffness of the metacarpophalangeal joint in the extension direction.

Kabd Stiffness of the metacarpophalangeal joint in the abduction direction.

KC Stiffness at the contacts.

Ko Grasp stiffness.

C Task compatibility index.

u Direction of desired force or velocity.

43
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4.1 Introduction

During our day-to-day life, we interact with objects in the world using our

hands in many different ways but give little thought to how we select where

to place our fingers on the object, what posture our hand takes, and the

impedance properties that we impart to the grasping hand. This section ex-

plores the relationship between the manipulation properties of grasps selected

for various tasks, and the requirements of the task.

The way that we grasp an object is influenced by our perception of the

physical properties of the object such as size and shape, as well as our inten-

tion for the action (see Rosenbaum et al. (2006) for a review). Affordances

of the object, a term introduced by Gibson (1979), are intrinsic properties

that afford a particular type of manipulation. The affordances of an object

affect how the grasp is selected for an object (Gentilucci, 2002).

In robotics, there are three broad approaches to the problem of grasp

synthesis - geometric, taxonomy or optimization based (Coelho & Grupen,

1997). The geometric approach plans grasps that satisfy form-closure or

force-closure. Form-closure means that the object being grasped is unable to

move, whereas force closure is when the contacts are able to apply any wrench

to the object, or alternatively, are able to resist any perturbation (Mason,

2001). Form-closure does not imply force-closure or vice versa. A force- or

form-closure grasp, if one exists, can be selected from the geometry of the

object. However, the use of force-closure may be an overly strict constraint

when stable grasps are required (Brook et al., 1998).

Taxonomy based grasp selection is where the grasp to use is selected from

a predefined taxonomy, such as the taxonomies proposed by Cutkosky (1989)

and Iberall (1997). The selection is made based on the type of grasp desired

(for example, power or precision grasp) and the geometry of the object.

An alternative approach is based on optimization. This is where the grasp

is selected to be optimal in terms of some measure. Shimoga (1996) presented

a comprehensive review of different properties that can be optimized, such as

dexterity, stability or dynamic behavior. Hester et al. (1999) used the velocity

transmission and force transmission properties (from the joint angles to the
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object being grasped) to select the optimal grasps.

The work described in this chapter is based on the optimization approach,

but looks at the problem from an inverse perspective. Here, it is assumed

that human grasps are optimal in some sense. Based on this assumption, the

optimality of the grasps selected for different tasks is examined in terms of

measures of force and velocity transmission properties, and stiffness.

The results of the first part of this work are published in Friedman &

Flash (2007).

4.2 Methods

Five right handed and two left handed male subjects aged between 25 and 37

(mean 31) gave informed consent to participate in the experiments. Stiffness

measurements were not performed for one of the subjects.

The CyberGlove (Immersion) was used to measure 22 joint angles of the

hand during the grasping movements. The joint angles were sampled at

90Hz throughout the recordings, and smoothed using cubic splines. The

3D locations of the joints (including the fingertips) were estimated using a

model of the hand described in Appendix A. Simultaneously, the position and

orientation of the wrist were recorded at 120Hz using the Fastrak (Polhemus),

which records the 3D position and orientation by sensing an AC electro-

magnetic field. The Fastrak data were resampled to 90Hz so that the data

coincided with those from the CyberGlove. The Fastrak and CyberGlove

data were combined to give the joint locations relative to the laboratory fixed

reference frame. The joint locations were then transformed into a reference

frame with its center located at the center of mass of the object. During

stiffness measurements, the CyberGrasp (Immersion) exoskeleton was placed

on the subject’s hand over the CyberGlove.

Nine different grasps involving 5 different objects were tested. These

grasps consisted of lifting a plastic cup, from the side and from the top,

stirring with and lifting a teaspoon, unscrewing and lifting the lid of a narrow

jar, unscrewing and lifting the lid of a wide jar and lifting a puzzle piece.

The objects and grasps are shown in Table 4.2.
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Object Dimensions Grasps

Plastic cup
4.3cm diameter at
base, 8.3cm diame-
ter at top, 10.9cm
height

(1) Lift from side(*) (2) Lift from top(*)

Narrow jar
8cm height of jar,
1.4cm height of lid,
3cm diameter

Unscrew lid Lift lid

Wide jar 5.6cm height of jar,
1.5cm height of lid,
6cm diameter

(3) Unscrew lid(*) (4) Lift lid(*)

Teaspoon

13.7cm length

(5) Lift(*) (6) Stir(*)

Puzzle
piece

base is 5.6cm diam-
eter, 0.6cm height,
rod is 1.0cm diam-
eter, 1.5cm long

Pick up

Table 4.1: The five objects and nine grasps tested in the experiment. Those
marked with (*) were subject to detailed analysis.
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All the grasps in this study were pad opposition grasps, that is, grasps

that contact the object only at the fingertips and not at the palm. The

subjects were instructed to use only their fingertips (and not their palms),

and adherence to this instruction was visually confirmed.

The experimental setup is shown in Figure 4.1. The subject sat upright

next to a table, with his or her arm resting on the table at approximately

waist level. Each trial began with the subject’s hand at a marked starting

position. The objects were manually placed at the marked object position

before each manipulation. The objects were attached firmly to the table using

strong Velcro during the stiffness measurement, and when the manipulation

involved the lid of the object.

The experiment was divided into two parts. The purpose of the first part

was to measure the joint angles and wrist location and orientation at the

onset of the manipulation task as well as during object manipulation. In the

second part, the stiffness of the hand was estimated by asking the subjects

to produce finger and hand configurations that matched those used at the

onset of the manipulation task, and by applying forces to the fingertips and

measuring their displacement.

The first part began with a procedure to calibrate the glove for the sub-

ject, as described in Appendix A. Before each movement, the subject rested

his or her arm on the table. Each trial, initiated by the experimenter when

the subject was ready, began with a beep. The subject then moved his or

her hand and held the object, and waited until the second beep (2.5 seconds

later). He or she then manipulated the object for 2 seconds as instructed,

after which a final beep was heard. At this time, he or she returned the ob-

ject to the table (if appropriate). For each object, the static forearm, hand

and finger configuration before the manipulation began (at the time of the

second beep) were measured. The number of fingers used for each grasp was

noted by the experimenter. The manipulation with each type of grasp was

repeated 3 times, i.e. 27 grasps were performed with the 9 manipulations.

The first block of trials took approximately 20 minutes. Sufficient periods of

rest were given to the subject between manipulations and at the end of the

block.
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20cmtransmitter
Fastrak

(with Velcro)
Object position

(without Velcro)
Object position

Resting position
of arm

Arm restraint
Fastrak receiver

CyberGrasp

Figure 4.1: Experimental setup. The appropriate object was placed at the
marked position before each manipulation. When necessary, the object was
attached to the table with strong Velcro (e.g. the base was attached to the
table when unscrewing the lid). Joint angles of the hand were recorded by the
CyberGlove worn on the hand, and the position and orientation of the wrist
were measured with the Fastrak. During measurements of the stiffness, the
CyberGrasp was placed over the CyberGlove and the forearm was restrained
with a plastic loop.
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After a short break, the second part began. The CyberGrasp (Immersion)

was placed on the subject’s hand over the CyberGlove, and the calibration

procedures for the CyberGlove and CyberGrasp were performed. Each trial

began with a beep, and in response the subject moved his or her hand in

order to grasp the object and was instructed to maintain the initial posture

they would use if they were to manipulate the object. Two seconds after the

first beep, a second beep was generated. At this time, a force was applied

to all fingers participating in the grasp for 300ms, causing the fingers to

move. After the 300ms of force application the force was removed and the

fingers returned to their initial position. After a random time, between 700ms

and 2000ms after the end of the previous force application, another force

was applied. A total of 25 forces were applied in each trial. During this

entire procedure, the forearm was supported by a plastic loop hanging from

a cantilever above. The displacements of the fingertips caused by the applied

forces, generally between 5mm and 20mm, were calculated from the joint

angles measured with the CyberGlove. The wrist sometimes moved slightly

(up to 3mm) as a result of the force application.

Forces of 1.0N, 1.25N, 1.5N, 1.75N, 2.0N were applied. Each force was

repeated 10 times with small variations added to the force (-0.05N, -0.025N,

+0N, +0.025N, +0.05N), each repeated twice.

Analysis

Grasp Jacobian The analysis was based on the grasp Jacobian at the

start of the manipulation. Full details of the derivation can be found in

Appendix B. The grasp Jacobian, sometimes known as the grasp matrix

(e.g., in Mason & Salisbury (1985)), Gh, is the transformation from finger

joint velocities to the velocity of the object.

ẋo = Ghθ̇ (4.1)

It takes into account the transformations for each finger from joint veloc-

ities to fingertip Cartesian velocity, the contact relationships (i.e., in which

directions force can be transmitted from the fingertips to the object), and the
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transformations from the fingertip frames of reference to the object frame of

reference.

The transformation from the joint velocities θ̇ to the spatial velocity Vf

of the finger tip is defined by the finger Jacobian Jf (θ)

Vf = Jf (θ)θ̇ (4.2)

which is a function of the posture. At the contact between the finger tip and

the object, forces can only be applied in certain directions, due to friction.

These constraints are formally stated using a grasp contact model Bci
. Here,

the soft-finger model (Mason & Salisbury, 1985) is used as an approximation

to the human finger, which assumes that force can be applied in three direc-

tions, as well as torques about the surface normal of the fingertip. The force

Fci
felt by the object as a result of applied finger forces fci

is defined by

Fci
= Bci

fci
,

√
f 2

1 + f 2
2 ≤ µf3, f3 ≥ 0, |f4| ≤ γ

Bci
=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


where µ is the coefficient of friction, and γ is the coefficient of torsional

friction.

The individual finger Jacobians are combined, together with the change

of reference frame and taking into account the contact relationships, to form

the hand Jacobian Jh:

Jh(θ, x0)θ̇ = ẋc

where ẋc is the velocity at the contact points. The effect of the contact
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forces on the object are determined by the grasp map G

Fo = Gfc

where the grasp map takes into account the contact relationships of the

fingers, and the change of coordinate system from the contacts to the object.

The forces applied by all the fingers are then summed to give the force applied

on the object, Fo.

The grasp Jacobian consists of the combination of the hand Jacobian and

the grasp map. The hand Jacobian transforms the joint angles (torques) to

the contact velocities (forces), while the grasp map transforms the contact

velocities (forces) to the object velocities (forces), as applied by the grasp.

The definition of the grasp Jacobian is thus

Gh = G+T Jh

where G+T is the transpose of the generalized inverse of the grasp map.

Ellipsoids The force transmission ellipsoids are a function of the grasp

Jacobian, and are defined by

F T
o (Gh(trans)G

T
h(trans))Fo ≤ 1 (4.3)

where Fo are the forces acting on the object. Similarly, the torque transmis-

sion ellipsoid is defined by

τT
o (Gh(angular)G

T
h(angular))τo = 1 (4.4)

where τo are the torques acting on the object. The direction with maximum

velocity transmission ratio will also be the direction with minimum force

transmission ratio. This relationship is a result of the conservation of energy

- the work performed by the fingers results in the same amount of work

performed on the object (excluding friction). These ellipsoids do not describe

the actual velocity or force being applied, rather, they represent the velocity
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and force production capabilities of the grasp on the object as a function of

the hand and finger configuration.

Stiffness A first order model of stiffness was used here (i.e., damping and

inertia terms were not considered), as was applied by Kao et al. (1997) and

Milner & Franklin (1998) for measuring the finger’s stiffness. Initially, the

two dimensional stiffness matrix for each fingertip in the plane containing the

major axes of the proximal, medial and distal phalanges was derived. The

total displacement vector at the end of the 300ms of force application was

used. The direction of the applied force was assumed to be perpendicular to

the major axis of the distal phalange and in the plane described above. The

parameters of the stiffness matrix K were found by minimizing the error in

the overdetermined equation

F = Kx (4.5)

under the condition that K is symmetric and positive definite. This was

implemented using the Optimization toolbox of Matlab.

In order to determine the three dimensional stiffness matrix for each fin-

ger, the unmeasured abduction stiffness was estimated. It was assumed that

there is a linear relationship between applied force and stiffness, as observed

in Hajian & Howe (1997). Based on Tables 1 and 2 from the aforementioned

paper, the extension and abduction stiffness were estimated to be

Kext = aextFext + cext

Kabd = aabdFabd + cabd

aext = 40.9m−1

cext = 92.5N/m

aabd = 49.5m−1

cabd = 126.0N/m

where Fext and Fabd are the applied extension and abduction forces, and Kext

and Kabd are the extension and abduction Cartesian stiffness. Two stiffness

ellipsoids were generated for each fingertip. The first uses the assumption
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that no force was applied in the abduction direction, hence the abduction

stiffness is 126.0 N/m. The second assumes that the maximal abduction

force is applied. The maximum abduction force that can be applied without

slipping can be calculated using the contact relationship, which is dependent

on the coefficient of friction. It is assumed here that the coefficient of friction

for all objects is µ = 0.45, based on the reported skin - polythene coefficient

of friction (from Figure 2a in Comaish & Bottoms (1971)). This value was

used as an approximation to the glove-object coefficient of friction, for which

no data were available. The maximum abduction force that can be applied is

then Fabd = µFext, under the assumption that the extension force is applied

in the normal direction. Hence the maximal abduction stiffness using the

above equations is

Kabd = µ
aabd

aext

(Kext − cext) + cabd (4.6)

The assumption that the extension force is in the direction of the normal

force is clearly violated in two cases: for the middle finger while stirring

with the spoon, and for the last finger (ring or little finger, depending on

the subject) while unscrewing the jar. In these cases, the normal force is in

the abduction direction, and so the maximum abduction force will instead

be Fabd = Fext

µ
. Hence in these cases the maximum abduction stiffness was

estimated as

Kabd =
aabd

µaext

(Kext − cext) + cabd (4.7)

In order to combine the fingertip stiffness matrices to form the grasp

stiffness matrix, the contact relationship must be taken into consideration.

The stiffness matrices of all the fingers can be combined to give Kc, which

is the stiffness at the contacts. This is achieved by a change of coordinate

system to the fingertip (the contact), by TCi
:

Kc =


T−1

C1
K1TC1

. . .

T−1
C5

K5TC5


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This relates movements of the contacts to the force at the contacts. The

relationship to the force on the object can then be written using the grasp

map

Fo = GKc(X −X0)

where X is the location of the contacts. However, what is wanted is the

stiffness relationship between the movement and resultant force of the object.

This can be achieved by expressing the relationship in terms of the object

location:

Fo = GKcG
T (xo − xo0)

and hence the grasp stiffness can be written as

Ko = GKcG
T

The object grasp stiffness matrix Ko is a 6 × 6 matrix. The upper left

quadrant of this matrix represents the relationship between the translational

forces and translational motion. This quadrant has been visualized as the

translational stiffness ellipsoid. Similarly, the bottom right quadrant of the

grasp stiffness matrix represents the relationship between angular motion

and torques. This quadrant has been visualized as the rotational stiffness

ellipsoid. The stiffness ellipsoids are visualized from the quadrant of the

matrix by multiplying a hypothetical rotating input displacement (Mussa-

Ivaldi et al., 1985):

Ko

cos(t1) sin(t2)

sin(t1) sin(t2)

cos(t2)

 0 < t1 < 2π, 0 < t2 < π

Task compatibility and mean ellipsoids The task compatibility index

defined by Chiu (1988) was computed for generating velocities and torques

along the axes of the coordinate system. This is the square of the distance

from the center of the ellipsoid to the surface in the desired direction. For
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forces / torques, the task compatibility index C is defined by

C =
1

uT (GhGT
h )u

(4.8)

and for velocities by

C =
1

uT (GhGT
h )−1u

(4.9)

where u is the desired force or velocity direction (in this case, along the

coordinate axes).

The “mean” ellipsoids for each quantity and task of each subject were

determined by taking the mean of the directions of the major axes, and the

mean of the shape parameters. Ellipsoids with major axis directions that

were more than two standard deviations away from the mean direction (in

spherical coordinates), or shape parameters more than two standard devia-

tions from the mean shape parameters were not used in computation of the

mean ellipsoid. The same procedure was used for finding the mean ellipsoids

across subjects.

4.3 Results

Six of the grasps where patterns could be clearly observed are described in

this section in detail. Results were omitted for the narrow jar and puzzle

piece.

The fingertip positions on the objects for these grasps for all subjects are

presented in Figure 4.2. The color of the line represents the finger used, and

the location of the line on the circle represents the position of the fingertip

on the surface of the object (projected onto the horizontal (XZ) plane). As

can be observed from this figure, for each type of manipulation, the subjects

selected different postures, including when the same object was manipulated

as part of different tasks. Differences were observed in the number of fingers

used in the grasp (for example, when lifting the lid, the number of fingers used

ranged between 3 and 5) and in the placement of the fingers (for example,

significant variation was seen in the thumb position). Variation was often
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seen in the consecutive repetitions by the same subject, although this usually

involved the same rotation of all the fingers relative to the object. The

contact between the fingertips and the object was generally on the inner side

of the finger, apart for unscrewing the lids and stirring the spoon, where the

side of one finger was used.

The calculated fingertip stiffness matrices have diagonal elements ranging

from approximately 50 N/m to 1000 N/m (see Equation (4.5)). These values

are of a similar range to those observed in Kao et al. (1997) and Milner &

Franklin (1998).

Qualitatively, observations on the grasp features were made based on the

shape and orientation of the mean ellipsoids, represented by the parameters

of the ellipsoids. The mean ellipsoids are presented graphically, in Figures 4.3

and 4.4, and their parameters are presented in Tables 4.2 and 4.3. An approx-

imate wire-frame rendering of the object is superimposed on the graphs of

the ellipsoids to aid in the analysis. The orientation of the ellipsoid (defined

by the azimuth, elevation and torsion parameters) determines the directions

in which object velocity or force can be most efficiently actuated (for veloc-

ity and force ellipsoids respectively), or the direction of maximum stiffness

(for the stiffness ellipsoid). The shape parameters determine the isotropy

of velocity or force production (for the velocity or force ellipsoids), or stiff-

ness. If in some direction, a large velocity can be generated on the object

by the grasping fingers (with a unit joint velocity vector magnitude), in this

direction the force that can be generated (with a unit joint torque vector

magnitude) will be small. This is due to the principle of virtual work.

The log of the values of the compatibility index for all subjects for six

grasps are plotted for force and velocity production (Figure 4.5) and for stiff-

ness (Figure 4.6), along the x (left-right), y (vertical) and z (front-back) axes.

The compatibility measures were calculated only along these axes because

of their connection to axes of movement and force production involved in

the manipulation tasks. Significant differences in the compatibility measure

at the p < 0.1 and p < 0.05 levels between different tasks being performed

on the same object are marked in the figures by (*) and (**) respectively.

The comparison was performed using the Wilcoxon signed rank test (Gib-
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Lift cup (side) Lift cup (top)

Unscrew jar lid Lift jar lid

Lift spoon
Stir spoon

Thumb

Index

Middle

Ring

Pinkie

Figure 4.2: Locations of the fingertips on the object for six tasks in the
horizontal (XZ) plane. Each concentric circle represents a single subject.
The position of a line represents the placement of the appropriate fingertip
on the circumference of the object. Only fingers that participated in the
grasp are plotted.
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Figure 4.3: Mean translational velocity, angular velocity, translational force
and torque ellipsoids for lifting the cup from the side (1st row) and from
the top (2nd row), unscrewing (3rd row) and lifting (4th row) the lid of a
jar, and lifting (5th row) and stirring with (6th row) a spoon over the seven
subjects. The solid and dashed black lines are the projections of the mean
and the mean plus one standard deviation respectively onto the XY, YZ and
XZ planes. A wire-frame not-to-scale rendering of the object is superimposed
on the graphs. The distance from the center of the ellipsoid to the surface
in a certain direction is the amount of velocity (force) that can be produced
as a result of a joint velocity (torque) vector with unit magnitude.
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Figure 4.4: Mean translational stiffness under the assumption of minimum
(first column) and maximum (second column) abduction stiffness, and mean
rotational stiffness for minimum (third column) and maximum (fourth col-
umn) abduction stiffness. The rows represent the same objects as in Fig-
ure 4.3. The stiffness ellipsoids represent the relative stiffness of the grasp in
different directions.
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Azimuth (rad) Elevation (rad) Torsion (rad) Volume Shape 1 Shape 2
Cup lift (side)
Transl. Vel. 0.15(±0.91) 0.88(±0.15) −2.88(±0.94) 3.60(±3.52)× 106 2.68(±1.21) 1.95(±0.72)
Ang. Vel. 0.16(±1.12) 0.41(±0.30) −1.08(±0.34) 68.60(±47.88) 0.61(±0.28) 1.17(±1.01)

Transl. Force −1.30(±0.19) −0.13(±0.51) 1.56(±0.16) 8.54(±2.07)× 10−6 0.72(±0.72) 1.35(±0.70)
Torque 1.45(±0.39) −0.71(±0.17) −0.39(±0.95) 0.39(±0.20) 2.06(±1.56) 1.32(±1.31)

Cup lift (top)
Transl. Vel. −0.92(±0.73) 0.15(±0.39) 1.88(±0.15) 3.37(±0.75)× 106 1.43(±0.53) 1.94(±0.89)
Ang. Vel. −0.51(±1.02) −0.38(±0.19) 0.22(±1.34) 43.89(±22.02) 2.28(±1.53) 2.53(±0.76)

Transl. Force −0.14(±0.97) −0.90(±0.14) 1.90(±0.15) 5.03(±1.99)× 10−6 1.83(±0.46) 1.91(±0.90)
Torque 1.43(±0.33) −0.31(±0.11) −2.63(±1.55) 0.56(±0.41) 2.56(±1.15) 3.59(±2.52)

Jar Unscrew Lid
Transl. Vel. 1.12(±0.82) −0.51(±0.27) −0.26(±0.81) 5.36(±4.30)× 106 1.88(±0.54) 1.53(±0.19)
Ang. Vel. −1.49(±0.29) −0.28(±0.19) −2.77(±1.51) 104.59(±134.49) 2.59(±1.23) 3.66(±1.56)

Transl. Force 1.10(±0.76) 1.00(±0.18) 1.21(±0.47) 5.22(±2.05)× 10−6 1.17(±0.44) 1.34(±0.91)
Torque 0.44(±1.03) −0.56(±0.10) 3.07(±0.87) 0.39(±0.29) 1.49(±0.33) 4.69(±4.01)

Jar Lift Lid
Transl. Vel. −2.28(±0.62) 0.44(±0.19) 0.43(±1.12) 2.36(±1.00)× 106 1.56(±0.44) 1.35(±0.57)
Ang. Vel. −0.99(±0.64) −0.06(±0.17) −0.88(±0.55) 124.69(±131.51) 1.90(±0.91) 2.23(±1.10)

Transl. Force −0.70(±0.86) −0.24(±0.38) −1.01(±0.33) 8.56(±5.92)× 10−6 0.87(±0.41) 1.00(±0.63)
Torque 0.67(±0.74) −0.90(±0.22) 2.29(±0.58) 0.65(±0.91) 1.76(±0.79) 2.03(±1.21)

Spoon Pickup
Transl. Vel. 0.75(±0.91) −1.11(±0.08) −1.82(±0.73) 2.77(±0.89)× 106 1.74(±0.38) 1.98(±0.73)
Ang. Vel. −1.26(±0.40) −0.16(±0.31) −1.24(±0.61) 758.19(±778.05) 2.73(±1.60) 5.04(±3.39)

Transl. Force 0.61(±1.01) 0.10(±0.29) −1.42(±0.38) 7.33(±1.94)× 10−6 1.42(±0.40) 2.05(±0.93)
Torque 0.10(±1.20) −1.21(±0.05) −1.26(±0.64) 0.04(±0.05) 3.72(±1.95) 4.22(±2.09)

Spoon Stir
Transl. Vel. 1.11(±1.19) 1.08(±0.09) 1.43(±0.73) 2.84(±2.43)× 106 1.52(±0.39) 2.21(±0.87)
Ang. Vel. −0.65(±1.05) 0.23(±0.38) 1.08(±0.17) 1.15(±0.94)× 103 1.64(±1.14) 2.67(±2.77)

Transl. Force 0.59(±0.60) −0.12(±0.29) −1.65(±0.21) 1.11(±0.75)× 10−5 1.57(±0.30) 2.44(±1.09)
Torque 1.93(±0.70) 1.14(±0.04) −0.73(±1.54) 0.28(±0.64) 3.71(±1.56) 2.56(±0.86)

Table 4.2: Ellipsoid parameters for the mean (across subjects) velocity and
force ellipsoids. The orientations azimuth, elevation and torsion (in radians)
define the direction in which force or velocity can be most efficiently effected,
and the shape parameters (volume, shape1 and shape2) define the magnitude
and degree of isotropy of velocity or force production. Units of volume for
translational velocity, angular velocity, translational stiffness and angular
stiffness are m3s−3, rad3s−3, N3 and N3m3 respectively.

bons, 1971) on the values of the compatibility index. When a compatibility

measure is consistently higher for one task compared to a second task being

performed on the same object, this invariance may represent a task-related

property of the grasp (for example, torque production about the vertical axis)

that the CNS is trying to optimize.

4.3.1 Cup

A plastic cup, shaped like a truncated elliptical cone, was picked up with

two different grasps, from the side (task 1) and from the top (task 2). In
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Figure 4.5: Kinematic task compatibility indices. The task compatibility
indices for translational velocity (first row), angular velocity (second row),
translational force (third row) and torque (fourth row) along the x (first
column), y (second column) and z (third column) directions, for lifting the
cup from the side (CS) and top (CT), unscrewing (JU) and lifting (JL) the
lid of the jar, and lifting (SL) and stirring (SS) with the spoon. Log scales
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and (**) represent significantly different values at p < 0.1 and p < 0.05 levels
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Azimuth (rad) Elevation (rad) Torsion (rad) Volume Shape 1 Shape 2
Cup lift (side)
Tr. stiff. (*) 1.08(±1.08) −0.60(±0.35) 1.78(±0.55) 5.65(±1.60)× 108 1.97(±0.83) 1.70(±0.46)
Tr. stiff. (+) 1.13(±1.15) −0.63(±0.35) 1.62(±0.47) 8.50(±3.17)× 108 1.97(±0.82) 1.59(±0.67)
Rot. stiff. (*) −0.06(±0.99) 0.65(±0.23) −0.49(±1.03) 4.39(±4.35)× 1019 1.68(±0.95) 49.93(±50.20)
Rot. stiff. (+) −0.14(±0.74) 0.57(±0.28) 2.72(±1.16) 6.52(±6.77)× 1019 4.69(±7.08) 49.53(±45.39)
Cup lift (top)
Tr. stiff. (*) −1.26(±0.57) 0.17(±0.41) 0.61(±1.24) 9.73(±9.40)× 108 1.30(±0.62) 1.52(±0.42)
Tr. stiff. (+) −1.26(±0.52) 0.11(±0.31) 0.61(±1.17) 1.82(±2.01)× 109 1.14(±0.49) 1.35(±0.72)
Rot. stiff. (*) 0.92(±0.83) 0.83(±0.21) 1.15(±0.72) 4.69(±6.10)× 1020 22.03(±27.75) 3.05(±4.14)
Rot. stiff. (+) 1.05(±0.80) 0.88(±0.28) 1.17(±0.69) 2.93(±5.54)× 1021 14.53(±29.18) 3.39(±4.74)
Jar Unscrew Lid
Tr. stiff. (*) −0.25(±0.91) 0.18(±0.35) 1.03(±0.37) 1.09(±1.05)× 109 0.96(±0.56) 1.03(±0.86)
Tr. stiff. (+) −0.30(±1.09) 0.34(±0.32) 0.11(±0.88) 1.63(±1.10)× 109 0.83(±0.29) 1.12(±0.91)
Rot. stiff. (*) −0.92(±0.98) −0.80(±0.14) −1.49(±0.69) 2.55(±5.56)× 1021 17.88(±28.12) 10.28(±18.08)
Rot. stiff. (+) −1.05(±1.07) −0.82(±0.17) −1.53(±0.64) 1.26(±1.09)× 1020 32.93(±52.68) 19.85(±23.08)
Jar Lift Lid
Tr. stiff. (*) 1.01(±0.51) −0.33(±0.38) −2.94(±0.95) 6.43(±3.97)× 108 2.14(±1.49) 1.56(±0.55)
Tr. stiff. (+) −0.37(±1.15) 0.33(±0.28) 0.78(±0.79) 1.97(±2.35)× 109 1.02(±0.16) 1.54(±0.77)
Rot. stiff. (*) −0.82(±0.86) −0.85(±0.11) −1.11(±0.72) 1.58(±3.35)× 1021 11.47(±14.80) 11.24(±20.56)
Rot. stiff. (+) −0.92(±0.82) −0.88(±0.11) −1.36(±0.66) 3.59(±7.71)× 1021 21.99(±29.30) 12.20(±22.02)
Spoon Pickup
Tr. stiff. (*) 1.06(±0.10) −0.72(±0.08) 3.00(±0.85) 1.02(±1.16)× 109 2.83(±2.23) 2.13(±0.12)
Tr. stiff. (+) 1.00(±0.24) −0.41(±0.21) −1.56(±0.09) 2.88(±4.70)× 109 1.54(±0.68) 1.50(±0.52)
Rot. stiff. (*) 0.38(±0.78) 0.63(±0.26) −2.50(±1.41) 3.98(±5.43)× 1019 2.59(±4.06) 78.93(±70.94)
Rot. stiff. (+) 0.95(±0.61) 0.76(±0.20) 2.44(±1.40) 1.13(±1.93)× 1020 5.93(±10.63) 56.40(±42.25)
Spoon Stir
Tr. stiff. (*) 1.26(±0.07) −0.71(±0.05) −3.01(±0.85) 5.33(±4.99)× 108 2.04(±0.87) 1.75(±0.35)
Tr. stiff. (+) 1.47(±0.02) −0.38(±0.11) −0.79(±0.70) 6.27(±4.65)× 108 1.75(±0.58) 1.26(±0.19)
Rot. stiff. (*) 0.18(±1.11) 0.43(±0.31) 0.69(±1.34) 5.38(±6.07)× 1019 3.64(±2.99) 122.79(±85.09)
Rot. stiff. (+) 0.44(±0.69) 0.55(±0.34) −2.49(±1.42) 1.30(±1.96)× 1020 1.41(±0.98) 94.85(±65.35)

Table 4.3: Ellipsoid parameters for the stiffness ellipsoids. Interpretation of
the parameters is the same as Table 4.2. (*) indicates the minimum abduction
stiffness assumption was used, (+) indicates that the maximum abduction
stiffness assumption was used.

both cases, only the fingertips contacted the object, and not the palm. The

movements involved lifting the cup vertically (along the positive y direction),

generally with negligible rotation.

Lifting a cup primarily requires movement of the arm rather than the

fingers. Hence, the role of the grasp is to stabilize the object and prevent

undesirable movement. Lifting from the side generally involved placing the

thumb on one side, and the other fingers close together (see Figure 4.2, top

left). When lifting from the top, the subjects spread their fingers around the

rim of the cup, although not uniformly. The values of the task compatibility

indices in Figure 4.5 indicate that the two postures have different interaction

capabilities with the object.

Lifting from the side has translational velocity compatibility indices in the



64 CHAPTER 4. GRASP SELECTION

x (left-right) and z (front-back) directions significantly smaller than those for

lifting from the top (Figure 4.5, top row). A significantly larger compatibility

index is also observed in the x direction for the force variable for lifting from

the side rather than from the top (Figure 4.5, third row). These results

mean that when lifting from the side, larger forces can be produced in this

direction.

Seemingly contradictory results are observed when considering the stiff-

ness, where lifting from the top has a significantly higher translational stiff-

ness compatibility index than lifting from the side in the z direction and

generally higher translational stiffness although not statistically significant

in the x direction. The explanation for this can be found in the fact that

the grasp stiffness measures the response of the grasp to applied forces as a

result of the elastic properties of the muscles, tendons and joints, rather than

the ability of the grasp to actively generate forces.

In terms of angular velocities, lifting from the top has a significantly

smaller task compatibility index for angular velocity in the y and z direc-

tions than for lifting from the side, meaning that the velocity can be better

controlled in these directions. Additionally, the rotational stiffness compati-

bility index in the y direction for both types of estimation of the abduction

stiffness are considerably higher for lifting from the top. Thus, lifting from

the top is able to better actively control angular velocities about the y axis

and additionally passively respond to external disturbances about this axis.

It appears that the choice of grasping from the side or top should depend on

whether translational or rotational disturbances are more likely.

The rotational stiffness ellipsoids were highly anisotropic, long and thin,

with low stiffness in the z direction for lifting from the side and in the x

direction for lifting from the top ( see Figure 4.4, first two rows, third and

fourth columns). The direction of the major axis was roughly perpendicular

to the direction of the opposition axis, defined here as the line connecting the

thumb and the average of the other fingers positions. The rotational stiffness

ellipsoids were similar for both cases of abduction stiffness.
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4.3.2 Wide jar

Two grasps were performed on the wide jar - unscrewing the lid (task number

3), and lifting the lid after it was already unscrewed (task number 4). It was

observed that unscrewing the lid involves primarily an anti-clockwise rotation

about the y axis. Lifting the lid, in contrast, involves a translation in the

positive y direction, with negligible rotation.

For lifting the lid, the subjects generally placed their thumbs on the side

of the object closest to their chest and the other fingers on the other side

of the object, relatively close to each other with even spacing between the

fingers. When unscrewing the same lid, the thumb was rotated clockwise,

and the last finger used in the grasp was placed such that the contact with

the object was with the side of the finger.

In order to unscrew the lid, it is necessary to apply a torque about the

y axis. Although the difference in the orientation of the torque ellipsoids

for unscrewing and lifting the lids is small, the task compatibility index for

applying a torque in the y axis is significantly larger for the unscrewing task

than for the lifting task (p < 0.05).

The difference in torque production capabilities of the two grasps is due

to the different finger placement. The placement of the last finger used

in the grasp such that it contacts the object with the side of the finger

allows rotation of the object by this finger by the extension of three joints

(metacarpophalangeal, proximal and distal interphalangeal) rather than only

by the abduction of the metacarpophalangeal joint. In addition, the rotation

of the thumb clockwise on the object moves it closer to its limit such that it

can rotate the lid over a larger angle.

The clear difference in task compatibility observed for torque production

in the y direction is not observed for translational velocity or force production

in this direction. Varied results were observed regarding the grasp for which

the velocity in the vertical (y) direction can be most efficiently produced.

The translational stiffness ellipsoids observed differ between the two tasks.

When unscrewing the lid (task number 3) the stiffness ellipsoids are fairly

isotropic, while the stiffness ellipsoids are “flatter” for lifting the lid, with
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greater stiffness in the horizontal (x and z) directions. These stiffness values

are large in a direction perpendicular to the velocity involved in lifting, which

is along the vertical (y) direction.

The mean rotational stiffness ellipsoid has greater stiffness in the vertical

(y) direction for both types of grasp, which would appear to be counterpro-

ductive for torque production about this axis. However, large amounts of

variation were observed in the rotational stiffness for this task.

4.3.3 Spoon

Two different types of manipulation were performed with the spoon - lifting

the spoon (task number 5), and stirring with the spoon (task number 6).

Whereas the task of lifting the spoon vertically (in the y direction) is pri-

marily performed by the arm, stirring the spoon (generally about the vertical

(y) axis) was performed by movements of the fingers.

For lifting the spoon, subjects used two or three fingers. Large amounts

of variation were observed in the placement of the fingers on the spoon.

All subjects apart from one (who used two fingers) used three fingers for

stirring with the spoon. Generally, the spoon was grasped with the side

of the middle finger. Stirring with the spoon was significantly better for

applying an angular velocity, about the vertical (y) axis than for lifting the

spoon. It should be noted that this is different from the unscrewing of the

lid where a preference was observed for applying torque about the y axis. In

contrast, the best grip for applying an angular velocity along the x and z

axes varied greatly between subjects.

Stiffness ellipsoids were not constructed for one subject due to insuf-

ficient movement of the fingers resulting from the force application. The

translational stiffness ellipsoids for stirring and lifting the spoon were fairly

isotropic, although the volume of the translational stiffness ellipsoid for lift-

ing the spoon was much larger than that for stirring with the spoon although

two fingers were generally used for picking up the spoon as opposed to three

for stirring with it. This finding reflects the different task requirements of

the grasps, because for lifting the spoon the grasp is required only to hold
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securely the object while lifting is performed by the arm.

4.3.4 General discussion

A large amount of variance was observed in the postures selected across

subjects for the same type of manipulation. Nevertheless, similarities have

been observed when comparing the force or velocity production capabilities,

and stiffness properties, between different types of manipulations on the same

object.

Throughout this section, the grasps have been analyzed in the frame of

reference of the object. Various works in robotics (for example, Mason (1981)

and de Schutter & van Brussel (1988)) have proposed planning control of a

robotic manipulator by specifying the task constraints in terms of the task

frame. However, it is difficult to know what constraints need to be specified

for a given task. For example, it is not intuitively clear whether it is more

desirable to be able to generate a high angular velocity or torque in order

to unscrew a lid. In this work, the goal is the inverse of that in robotics

studies - to determine which characteristics humans give to grasps in order

to perform different tasks.

The use of the velocity and force ellipsoids to measure task compatibility

for generating optimum grasps for robotic manipulators was proposed by

Chiu (1988). Buttolo (1996) compared the stiffness of different pen grasps by

comparing the stiffness ellipsoids of the grasp. He found that different three

fingered grasps gave similar stiffness ellipsoids, which were more suitable for

fine control than using a single finger because of larger stiffness values.

For all of the tasks, a large amount of variation in finger placement on

the objects was observed. The velocity and force transmission ellipsoids are

a function of the hand posture, and so the variation in finger placement

caused significant variations in the resulting velocity and force transmission

ellipsoids. The grasp stiffness, as visualized by the stiffness ellipsoids is also

dependent on the hand posture (as well as the finger stiffnesses). Thus, some

of the variation in the stiffness ellipsoids was probably due to variations in the

posture. However, despite these significant variations, patterns were observed
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in the compatibility of the grasps for controlling or effecting force and velocity

in salient task directions. For example, a larger torque can be produced about

the vertical (y) axis for unscrewing the lid of the jar rather than for lifting

the lid. Based on this and similar findings, it appears that for the same

object, different preferred directions of velocity and force production were

selected depending on the task being performed. This is important to note,

because it implies that grasp planning cannot be performed based purely on

the geometry of the object but rather must take into account the desired

manipulation.

Greater variance was observed in the task compatibility measures between

subjects for some of the parameters where there was no obvious connection

between the parameter and the task. This suggests that control or actua-

tion of force or velocity in these directions is less important for a successful

completion of the task.

For the rotational stiffness, the major axis of the stiffness ellipsoid was

often perpendicular to the opposition axis (the line connecting the thumb

and the average of the other finger positions). This may be a result of forces

being applied parallel to this axis to hold the object stably.

The translational stiffness ellipsoids under the assumption of maximum

abduction stiffness have a larger volume than the stiffness ellipsoids under

the assumption of minimum abduction stiffness for the same task. This

is because the finger stiffness ellipsoids under the assumption of maximum

abduction will have a larger volume, and the grasp stiffness ellipsoids are the

result of the summation of the finger stiffness ellipsoids (after rotation into

the appropriate frame of reference).

It appears that the stiffness may be selected by making the grasp com-

pliant (i.e., low stiffness) in the directions in which forces or movement are

to be applied, and stiff in the directions in which movement is not desired

(Cutkosky, 1985). Using more fingers in a grasp will generally increase the

stiffness. Although the net force on the object will be zero when the object

is not moving (so that the object is in equilibrium), in spite of the “canceling

out” of the applied forces, the stiffness of the fingers sum.

Throughout the measurements performed in this section, the subjects
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wore the CyberGlove. While the inner surface of the glove, where the hand

is in contact with the object is relatively thin, it is expected that wearing the

glove will change in a small way the grasping behavior observed. The glove

also restricts slightly the range of movement of the fingers. Despite these

differences, the subjects easily performed successfully the tasks, and thus we

expect that the differences in grasping when wearing the glove compared to

grasping without the glove will be small, and will not affect adversely the

overall patterns of behavior.

In the construction of the grasp stiffness ellipsoid, it was assumed that

the fingers are not coupled. However, some of the muscles serve all fingers

(Li et al., 2002; Leijnse, 1997). Hence, it is expected that there will be

some coupling between the fingers. The magnitude of the coupling should

be determined through further experiments.
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4.4 Optimal grasp selection

In the previous section, the grasps that were selected for different tasks on the

same object were compared. Different values for the task compatibility index

were observed between the tasks for force or torque generation in directions

related to the task. For example, when unscrewing a lid, a larger torque

could be applied about the y axis than when lifting the lid. These differences

in capabilities are due to the different postures of the hand. This naturally

raises the question of which posture should be selected to be able to produce

the largest torque, and whether the grasps we select are optimal in this

sense. This section examines the broader question of what, if anything, is

being optimized when we perform grasping. The candidates for quantities

that are being optimized that are considered here are the force and velocity

transmission capabilities, and stiffness, as described in the previous section.

4.4.1 Methods

In order to determine the optimality of the grasps subjects selected during

the experiment, these grasps were compared to a large number of computer

generated grasps. The comparison was in terms of the velocity and force

compatibility measures, and their stiffness.

For each object that was used in the experiment, grasps were generated

with the same number of grasping fingers as the subject used in the experi-

ment (from two to five fingers). Ten joint angles uniformly dividing the joint

ranges the subjects used across all movements were selected for each joint.

It should be noted that the joint ranges varied between fingers, and did not

in general agree with standard tables of joint ranges (such as those found in

Norkin & White (1985)).

It was assumed that the ratio between the proximal interphalangeal joint

(PIJ) and the distal interphalangeal joint (DIJ) is constant, based on findings

that there is a linear linkage between these joints (Hahn et al., 1995). The

ratio used was the average of the ratio between these joints observed in the

data, which was generally close to the value published in the aforementioned

work (0.76). All possible combinations of the joint angles spanning the range



4.4. OPTIMAL GRASP SELECTION 71

were then considered for the entire finger (i.e., for the thumb 104 postures

were considered, for the other fingers 103 postures). For grasps involving

more than 3 fingers, the palm arch (see Figure A.1) was also allowed to vary

(over 5 different values). A sample of the postures for the index finger is

shown in Figure 4.7. Thus the number of possible grasps for 2, 3, 4 and 5

fingered grasps is 107, 1010, 5× 1013 and 5× 1016 respectively.
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Figure 4.7: A sample of the postures considered for the index finger in the
optimization. In total, 1000 postures were generated for the index finger.

Generating such a large number of grasps would take a long time, so

a Monte Carlo method was used instead. A grasp was constructed by first

randomly selecting a thumb and index posture. At this point, several tests for

the feasibility of the grasp were performed. The relevant tests were performed

as soon as possible, so that infeasible grasps could be quickly discarded.

The tests performed at this point checked that the fingers did not cross

over, and that the distance between the thumb and index fingers was not

so large that grasping the object would be impossible. If the grasp passed

these tests, additional fingers were added, with the posture of the next finger

selected randomly, until the number of fingers equaled the number used in

the experiment. For all of the grasps except for lifting the cup from the

side, the fingertips of the subjects were all approximately in the horizontal

plane. Based on this, only postures where the fingertips were in a plane were

considered. Lifting the cup from the side was not included in this analysis.

After the addition of each finger, similar feasibility tests were applied.



72 CHAPTER 4. GRASP SELECTION

Figure 4.8: Two rendered views of a feasible grasp, showing a wire-frame
hand grasping a cylindrical shaped object. A large number of such feasible
grasps were generated.

After all the fingers were added, the best fit of the fingertips to the cir-

cumference of a disc (or the edges of a rectangle), whose dimensions were

the same as the objects used in the experiment (from Table 4.2) was calcu-

lated. The grasp was considered feasible only if the distance of all fingers to

the surface of the disc / rectangle was less than 1cm. Additionally, it was

required that the fingers contact the object with the fingertips (and not the

back of the finger), and that all the fingers not be on one side of the object.

This last requirement is necessary so that a stable, force closure grasp will

be possible. An example of a feasible grasp is shown in Figure 4.8.

For the feasible grasps, the wrist orientation was selected such that the

disc (or rectangular prism) was parallel to the horizontal plane, as was the

case in the experiment. This was repeated until either 100,000 candidate

grasps were constructed, or a total of 1000 feasible grasps were generated.

This number of grasps was considered enough to sample sufficiently the space

of possible grasps on the object.

For each generated grasp, the grasp Jacobian was calculated and from

this, the task compatibility measures were calculated for force, torque, veloc-

ity and angular velocity generation along the x, y and z axes. The grasp stiff-

ness was modeled using the technique described in Section 3.2. The magni-

tudes of translational and rotational stiffnesses along the Cartesian axes were

calculated. In order to compare between the different measures, which have
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different units, the normalized compatibility measure was defined, calculated

as the fraction of computer generated grasps that have smaller compatibility

measures than the experimental compatibility measure, on the same object,

with the same hand geometry and number of fingers. Thus, all normalized

compatibility measures lie between 0 and 1. If a normalized compatibility

measure is close to 1, this means that the experimentally selected grasp was

close to optimal for this particular measure.

4.4.2 Results and Discussion

The task compatibility scores of the computer generated grasps are compared

to the results from the experiments for Subject 3 in Figures 4.9 and 4.10.

These graphs show the values of relevant compatibility measures, selected

based on the conclusions in the previous section. The sorted compatibility

measures for the computer generated grasps are shown as the continuous blue

lines. The compatibility measures for the experimentally recorded grasps

are shown as the stars, and they have been plotted at the same horizontal

location as the computer generated grasp with the closest compatibility score.

Hence if a star appears at a high value, this means that this grasp is close to

optimal in terms of this particular quantity. Figure 4.9 shows these results

for the force/velocity compatibility, while Figure 4.10 shows the results for

the stiffness measures.

As can be observed in these figures, a large range of compatibility mea-

sures can be obtained by selecting different grasps on the same object. Most

of the graphs have a similar shape - roughly linear for most of the range,

with sharp increases at low and high values.

For example, for lifting the lid of the jar, and lifting the lid of the narrow

bottle, the grasps selected by the subject were close to optimal for applying

velocity in the direction of the task (vertical y), as seen in the second and

third graphs in the right column in Figure 4.9. In contrast, for unscrewing

the lid of the jar (second graph on the left column), the unscrewing action,

although able to produce more torque than for the lifting grasp, is subop-

timal. However for this same task, the stiffness in the x direction (second
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Figure 4.9: Task compatibility measures for Subject 3, for relevant compat-
ibility measures. The continuous blue line is the sorted task compatibility
measures of the computer generated grasps. The stars represent the grasps
selected by the subjects.
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Figure 4.10: Task compatibility measures for Subject 3, for relevant stiffness
compatibility measures. The continuous blue line is the sorted task compat-
ibility measures of the computer generated grasps. The stars represent the
grasps selected by the subjects.
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graph on the left column in Figure 4.10) is close to optimal. The compat-

ibility measures of these two quantities for the computer generated graphs,

and the experimentally selected grasps, are shown in Figure 4.11.
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Figure 4.11: The trade-off between stiffness in the x direction, and torque
production about the y axis. Each blue point represents one sample from
the simulation. The points with high torque production ability have low
stiffness. The stiffness / torque production ability selected by the subject
had high stiffness.

In this figure, it can be seen that there are relatively few postures that

have high torque production ability, and those that do, also have lower stiff-

ness in the horizontal (x) direction. The grasps with the highest stiffness

in the x direction have the lowest values for torque production. Thus, a

trade-off must be made between the two. In this case, it appears that the

subjects chose to optimize stiffness in the x direction (which was observed

in Figure 4.10 to be close to optimal), rather than torque production ability

about the y axis. It is possible that a task which requires a larger amount

of torque would have caused the subjects to sacrifice stiffness in the x direc-

tion in order to have the ability to produce a larger torque in the required

direction.

Mason (1981); de Schutter & van Brussel (1988) specified the task con-

straints for performing various compliant tasks in terms of forces and ve-

locities, and proposed controllers for implementing these constraints with

a robot. The stiffness was selected while constructing the controller, rather

than as a specific task requirement. For example, in the task described above,
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it may have been that the requirement was that there be zero force in the

horizontal direction (so as not to interfere with the task), and this constraint

can be realized by requiring high stiffness in the x direction.

Based on one subject, it is difficult to determine what is actually being

optimized, because although a particular measure may be optimal, it may

be that the CNS is actually trying to optimize some other measure and the

optimality observed is simply a consequence of this. One way to partially

overcome this problem is to study many objects, and many subjects. If the

same patterns are observed across subjects and objects, this strengthens the

claim that such measures are being optimized and reduces the probability

that the findings are a consequence of optimization of some other quantity.

While we only have data from a relatively small number of objects, the pooled

data from six subjects can give a better basis for analysis.

This analysis is performed by looking at the normalized compatibility

measures. If the pooled (for all subjects and repetitions) normalized com-

patibility measures for a given task on an object show a mean value signifi-

cantly different from 0.5, this suggests that this quantity may be optimized

(maximized if the value is greater than 0.5, or minimized if the value is less

than 0.5). This analysis was performed on all the compatibility measures

along the 3 coordinate axes. Tables 4.4 and 4.5 show the mean and standard

deviation of the normalized compatibility measures for the eight tasks for the

kinematic and stiffness measures respectively.

The values are colored in red if the mean of the normalized compatibility

measure is significantly greater than 0.5, and colored in blue if the normal-

ized compatibility measure is less than 0.5. This test is performed using a

Student’s t-test, with significance at the 0.05 level.

It is immediately apparent from Table 4.5 that the rotational stiffness is

low (mean of less than 0.5) for nearly all the tasks. In order to have high

rotational stiffness, the fingers need to be spread out around the circumfer-

ence of the object, something which was not generally done. Rather, the

fingers used were generally placed opposite the thumb. This finding suggests

that, at least for the tasks selected, having high rotational stiffness is not

required, or on the contrary, the grasps may have been selected to be highly
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rotationally compliant (the opposite of stiffness).

For some of the tasks, the compatibility measures being optimized are

similar to the findings described in the previous section, and can be related

to salient task-related properties. However, it should be noted that this is

a different type of analysis. Whereas in the previous section, two different

grasps on the same object were compared, here each grasp individually is

compared with an approximation to the space of all possible grasps on the

object.

For example, for unscrewing the jar, the ability to produce torque about

the y axis has a mean value significantly greater than 0.5, which suggests

that the grasps are chosen to be able to produce torque in this direction to

succeed in the unscrewing task.

For lifting the lid of the bottle, and lifting the puzzle piece, the mean

velocity in the vertical y direction is significantly greater than 0.5. This may

be related to the requirements of the task, that is, to lift the object vertically.

In terms of the stiffness, for the spoon the mean of the normalized stiffness

values in the y direction is significantly lower than 0.5.

For many of the other values which are significantly different from 0.5,

there is not a clear connection between the value and the task being per-

formed. For other tasks, there is a large amount of variance between subjects

which resulted in no measures being different from 0.5. It is also possible,

due to the symmetry of the objects, that the different strategies used by

different subjects caused the large amount of variation observed.

In conclusion, this technique shows promise for determining the potential

quantities being optimized during grasp selection. In order to make more

decisive statements about what is being optimized during grasping, it would

be necessary to study a larger range of objects with similar task requirements,

and to then observe the common patterns in terms of the compatibility scores

across the same tasks on different objects.



Chapter 5

Trajectories of the fingers

Nomenclature

θ Joint angles of the finger.

θ̇ Joint velocities of the finger.

τ Joint torques of the finger.

r Fingertip radius from knuckle.

θr Fingertip angles from knuckle.

CE Kinetic energy-like cost.

CT Minimum torque-change cost.

t Time.

t0 Time at start of movement.

tf Time at conclusion of movement.

φ
(
km) Basis functions.

λ Arbitrary parameter.

s Arc length along the fingertip path.

M(θ) Manipulator inertia matrix.

Ck,m Normalization factor for Jacobi polynomial.

P
(2m,2m)
k Jacobi polynomial.

RMSE Root mean square error.
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tn Normalized time (normalized by the duration of the movement).

k Ratio of widths of successive whorls in a logarithmic spiral.

z Complex number representation of the fingertip location.

li Length of the ith link of the finger.

θMPJ Extension / flexion of the metacarpophalangeal joint.

θPIJ Extension / flexion of the proximal interphalangeal joint.

θDIJ Extension / flexion of the distal interphalangeal joint.

a Logarithmic spiral parameter that determines its size.

b Logarithmic spiral parameter that determines its growth rate.

Exy RMSE of the fingertip position with respect to the arc length.

Evel RMSE of the fingertip velocity with respect to time.

Eposture RMSE of the joint angles with respect to time.

5.1 Introduction

This section examines the trajectory of the index finger during grasping move-

ments, in particular, which endpoint paths and joint angle trajectories are

used during these movements. Different models from the literature, in ad-

dition to some novel models, are compared for their ability to describe the

observed experimental data.

The study of grasping movements in humans has been mostly addressed

from the perspective of reach-to-grasp movements, which have been consid-

ered as consisting of two independent components (Jeannerod, 1981), one for

bringing the hand to the location of the object, and the other for shaping the

hand for the grasp. The focus of this section is on the component responsible

for shaping the fingers during the grasp.

There have been relatively few studies looking at the trajectories of the

fingertips during grasping. In the model of Rosenbaum et al. (2001), where

the final grasping posture is selected based on stored postures, the velocity

profiles of all the joints are set to have bell shaped velocity profiles from

their current value, through a via point, to the predetermined goal values.

In contrast, the model of Smeets & Brenner (1999) suggested that it is the

grasping fingers that move to the object in extrinsic space, and in their model,
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the movement of the fingertips were modeled by minimum jerk trajectories

in Cartesian space (rather than joint space).

An alternate approach to studying the trajectories of finger movements

during grasping has been to use dimensionality reduction techniques. These

techniques use a number of repetitions of different tasks to specify proto-

typical trajectories of the fingers during such tasks, which can be linearly

combined in various combinations. Mason et al. (2001) used singular value

decomposition (SVD) to approximate the 3D position of 21 markers on the

hand at 180 time samples while grasping a variety of objects. They showed

that the trajectory can be reconstructed well using a small number of eigen-

postures (97.3% of the variance described for the first set of eigenpostures,

and 1.9% for the second set). Similarly, Santello et al. (2002) demonstrated

that using principal component analysis on 15 joint angles at 120 time sam-

ples, the first two principal components can describe 75% of the variance of

the movement. The first principal component consisted of the fingers simul-

taneously extending together to a maximum opening, then flexing together

to close in on the object. However, the eigenpostures generated by these

techniques are dependent on the types of tasks used to generate them, and

so may not be generalizable, and they do not offer an explanation for the

underlying principle that produced these particular trajectories.

5.1.1 Logarithmic spirals for describing finger motion

Littler (1973) noted from observation that the paths taken by the fingertips

approximately follow a logarithmic (sometimes called equiangular) spiral,

although he did not provide experimental proof of this. Gupta et al. (1998)

performed measurements of the paths taken by the fingers using a motion

capture system and confirmed this finding, although they did not test any

alternative parameterizations of the path. Recently, the index finger was

measured during grasping, and a logarithmic spiral was found to be a good

fit to the fingertip paths (Kamper et al., 2003), and better than the fit of a

parabola.



84 CHAPTER 5. TRAJECTORIES OF THE FINGERS

Figure 5.1: An example of a shell, a chambered Nautilus, whose shape cor-
responds to a logarithmic spiral. Reproduced from Thompson (1992).

The logarithmic spiral was first described by Descartes in 1638 (Thomp-

son, 1992). Jacob Bernoulli also studied the logarithmic spiral in 1691-93,

and described several of its properties (Archibald, 1918). It has the feature

that the rate of change of the radius of the spiral is proportional to the an-

gular rotation θr. As a result of this, the total shape of the spiral remains

constant, despite its growth. This implies that the radius r on a given whorl1

is a constant multiple k of the radius on the previous whorl, i.e.

r(θr + 2π) = kr(θr), ∀θr (5.1)

The equation for a logarithmic spiral can be written in polar coordinates by

r = aebθr (5.2)

where the parameters a and b describe the spiral. By substituting Equa-

tion (5.2) into Equation (5.1), we get the value k in terms of b

k = e2πb (5.3)

1A whorl is a single, complete 360◦ turn in the growth of a spiral (Thompson, 1992).
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Thompson (1992) presents many examples of where logarithmic spirals

can be observed in nature, such as sea shells (see Figure 5.1), with differing

values of k. The ratio will affect how tight the curve is. One particular value

of k of interest is that of φ =
√

5+1
2

≈ 1.618, the golden ratio. It has been

suggested that the ratios of the segment lengths in the finger follow this ratio

(Littler, 1973). Park et al. (2003) attempted to prove this by taking X-rays

of 100 hands and measuring the bone lengths. Although their findings did

not support this assumption, they suggest that the ratio may hold if instead

the length is calculated between the centers of rotation (although this has

not been tested). Based on this assumption, Markley (2003) predicted that

the logarithmic spiral produced by the motion path of the fingers should have

a k = φ, although this has not been experimentally confirmed.

Mathematical representation of the fingertip location The equation

of the fingertip can be written using complex numbers, where

z = x + iy

The location of the fingertip is given by

x = l1 cos(θMPJ)+l2 cos(θMPJ + θPIJ) + l3 cos(θMPJ + θPIJ + θDIJ)

y = l1 sin(θMPJ) +l2 sin(θMPJ + θPIJ) + l3 sin(θMPJ + θPIJ + θDIJ) (5.4)

where θMPJ, θPIJ and θDIJ are the metacarpophalangeal joint, proximal inter-

phalangeal joint and distal interphalangeal joint angles of the finger respec-

tively. This can be written compactly as zft

zft = eiθMPJ
[
l1 + eiθPIJ

(
l2 + eiθDIJl3

)]
(5.5)

The fingertip location corresponding to a logarithmic spiral, zls is

zls = ae(i+b)θr (5.6)

where θr is the angle of the fingertip in polar coordinates. If the trajectory
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of the fingertip is indeed a logarithmic spiral, then Equations (5.5) and (5.6)

should be equivalent, although it is not clear how this can be achieved.

When the long axes of the phalanges of the finger are parallel to the palm,

the finger lies along the y axis. In the posture where θr = θMPJ = θPIJ =

θDIJ = 0, the a value can be determined:

a = l1 + l2 + l3 (5.7)

The value of θr can be calculated as it is the argument of the complex number

zft, which can be determined by tan−1(
yft

xft
):

θr = tan−1

(
yft

xft

)
= tan−1

(
l1 sin(θMPJ) + l2 sin(θMPJ + θPIJ) + l3 sin(θMPJ + θPIJ + θDIJ)

l1 cos(θMPJ) + l2 cos(θMPJ + θPIJ) + l3 cos(θMPJ + θPIJ + θDIJ)

)
A first order approximation that will be reasonably close over the range of

movement is given by

θr ≈ θMPJ +
l2 + l3

l1 + l2 + l3
θPIJ +

l3
l1 + l2 + l3

θDIJ

The distance to the fingertip can be calculated from r =
√

x2
ft + y2

ft

r =
√

l21 + l22 + l23 + 2l2l3 cos(θDIJ) + 2l1l2 cos(θPIJ) + 2l1l3 cos(θDIJ + θPIJ)

A first order approximation to bθr was then calculated after rearranging

Equation (5.2):

bθr = log
r

a

≈ − l1l3θPIJθDIJ

(l1 + l2 + l3)2
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Then b is given by

b ≈ − l1l3θPIJθDIJ

(l1 + l2 + l3)2

l1 + l2 + l3
(l1 + l2 + l3)θMPJ + (l2 + l3)θPIJ + l3θDIJ

= − l1l3θPIJθDIJ

(l1 + l2 + l3)θMPJ + (l2 + l3)θPIJ + l3θDIJ

This allows the relationship between two of the joint angles to be computed

if the third (and b is known)

θDIJ = −bl1θMPJ + (l2 + l3)(θMPJ + θPIJ)

l3(b + l1θPIJ)

θPIJ = −b(l3θDIJ + (l1 + l2 + l3)θMPJ)

b(l2 + l3) + l1l3θDIJ

θMPJ =
bl3θDIJ + b(l2 + l3)θPIJ + l1l3θDIJθPIJ

b(l1 + l2 + l3)

If, as is often assumed, θDIJ is linearly related to θPIJ (Hahn et al., 1995),

then (where θDIJ = mθPIJ)

θMPJ =
b(l2 + l3 + l3m)θPIJ + l1l3mθ2

PIJ

b(l1 + l2 + l3)
(5.8)

So if θDIJ and θPIJ are linearly related, then θMPJ and θPIJ can not be linearly

related, if the fingertip follows a logarithmic spiral. Thus it is not theoreti-

cally possible for the joint angles to be linearly related (as is the case in the

minimum angular jerk model) and for the endpoint path to be a logarithmic

spiral.

5.1.2 Prediction of path from minimization of kinetic

energy-like function

While the logarithmic spiral trajectory of the fingertip may have some at-

tractive geometric properties, alternative models were considered based on

energetic considerations. This was partly motived by the recent work of Biess

et al. (2006a), which models the path of the arm by minimizing a cost func-

tion related to the kinetic energy of the movement. Here, a similar procedure
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is followed for the finger, and similarly, the path is predicted independently

of the velocity profile.

The kinetic energy Ek of a multiple link open-chain manipulator like the

finger can be written in terms of the manipulator inertia matrix (Murray

et al., 1994):

Ek(θ, θ̇) =
1

2
θ̇T M(θ)θ̇

where the 3x3 matrix M is known as the manipulator inertia matrix. The

derivation of M for this model of the finger can be found in Equation (3.4).

The cost function used here is similar to this, but the parameter is an arbi-

trary one (λ), rather than time. Thus it is not equivalent to kinetic energy.

The definition is given by

CE =
1

2

∫
θ̇(λ)T M(θ(λ))θ̇(λ)dλ (5.9)

5.1.3 Time course of the movements

In Kamper et al. (2003), it was claimed that the path of the fingertip does not

follow a minimum jerk solution (Flash & Hogan, 1985), where the integral of

the squared sum of the jerk in Cartesian coordinates is minimized. According

to the original minimum jerk formulation, this would require the path to be

a straight line, which it clearly is not. In the work of Kamper et al. (2003), it

was shown that even if the endpoint constraint that the acceleration is zero

at the start and end of the movement is removed, the trajectory is still does

not minimize the jerk cost.

However, an alternative approach is to consider minimizing jerk on the

Euclidean arc length (Biess et al., 2006a), i.e., that the squared arc length

jerk cost

C =

∫ tf

t=0

...
s (t)2dt (5.10)

is minimized. The arc length is the length along the curve, and can be

calculated by

s =

∫ √
x′(λ)2 + y′(λ)2dλ (5.11)
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5.2 Methods

The experimental data used here was taken from four of the subjects of

the grasping experiments described in Chapter 4. During a typical grasping

movement, the fingers first open, before closing in on the object (Jeannerod,

1981). The part of the movement that is examined here is from the time of

maximum aperture of the fingers to when the fingers grasp the object. The

segmentation was performed by selecting the last continuous region before

the grasp where all the relevant joint velocities are positive. The movement

was considered to have been finished when the mean square velocities of the

joints in the finger were below a threshold of 0.10 rad2s−2. Only grasping

movements which started from rest (at the moment of maximum aperture)

were considered.

The lengths and radii of the fingers were measured using calipers. The

mass was estimated by assuming that the phalanges are cylinders, with a den-

sity of 1200 kg m−3 (Dempster, 1955). These data were used in calculating

the inertia matrices for the fingers.

If the finger trajectories selected are indeed a result of energetic consid-

erations, then changes in these trajectories should be observed if the inertia

of the finger is changed. In order to test this, the experiments were repeated

for the four subjects examined with the addition of a weight of 20g to the

medial phalange of the index finger. This weight was in the form of a lead

spiral, worn symmetrically around the phalange such that the inertia of the

phalange would increase in a uniform way in all directions. This weight was

much larger than the typical mass of this phalange (around 3g). The lead

spiral was sufficiently small that it could be worn inside the CyberGlove and

did not adversely affect the movements.

Logarithmic spiral parameters The best fit logarithmic spirals were fit

to each movement, which required finding the a and b parameters in Equa-

tion 5.2. These values were compared to the values expected from Equa-

tion 5.7, and the suggestion in the literature that k ≈ 1.618.
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Time course In order to test how close the arc length trajectories of the

movements are to the minimum arc length jerk trajectories, the parameters

of a fifth order polynomial were fit to the arc length

s(tn) = s(1)
(
a1t

5
n + a2t

4
n + a3t

3
n

)
, s(0) = 0, tn =

t− t0
tf − t0

. (5.12)

An ideal minimum jerk trajectory, with initial and final velocity and accel-

eration of zero will have the parameters (Flash & Hogan, 1985)

a1 = 6

a2 = −15

a3 = 10

For comparison, the fit to θMPJ(t), θPIJ(t) and θDIJ(t) are also shown. This

is equivalent to selecting a minimum angular jerk trajectory, and is similar

to the technique used in Rosenbaum et al. (2001), where they generated

movements with bell-shaped angular velocity profiles. In general, the jerk

can not be minimized simultaneously for the arc length and the joint angles,

due to the non-linear relationship between them.

Models Four different models were compared for predicting the trajectories

of the index finger.

For the first two models, the time course was set such that the squared jerk

of the Euclidean arc length along the path (Equation (5.10)) was minimized.

The optimal arc length jerk trajectory can be written as

s(tn) = s(1)(6t5n − 15t4n + 10t3n), s(0) = 0, tn =
t− t0
tf − t0

. (5.13)

The arc length at each sample point during the modeled movement was

calculated using Equation (5.11), and the movement was then resampled so

that the arc length jerk would be minimized. The paths of the two models

were calculated by

i. The path was selected to minimize the integral of the weighted squared
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joint derivatives along the path (Equation (5.9))).

ii. The path was selected to be the best fit logarithmic spiral (Equa-

tion (5.6)).

For model (i), the joint angles of the metacarpophalangeal (θMPJ) and

proximal interphalangeal (θPIJ) joints were modeled using Jacobi polynomi-

als (Wada et al., 2001; Biess et al., 2006b). Full details of the technique used

can be found in Biess et al. (2006b). Each joint was modeled as a function of

a parameter λ (which is a parameter that increases monotonically along the

path, but generally is not linearly related to either the arc length or time) by

θ(λ) = θ0 + (θf − θ0)λ +
N∑

k=0

cikφ
(1)
k (λ), 0 ≤ λ ≤ 1 (5.14)

The first two terms here, which describe a straight line from the initial

to final joint angle, ensure that the boundary conditions are met. The basis

functions are described in terms of Jacobi polynomials. Each basis function

satisfies homogeneous boundary conditions. The basis functions, are defined

by (Wada et al., 2001; Biess et al., 2006b)

φ
(m)
k (λ) = Ck,m22mλm(1− λ)mP

(2m,2m)
k (2λ− 1) (5.15)

where m is the order of the highest derivative in the cost functional, Ck,m is

a normalization factor, the term λm(1− λ)m ensures that the basis function

vanishes at the boundary points, and P
(2m,2m)
k is the Jacobi polynomial,

defined by

P (α,β)
n (x) =

1

2n

n∑
k=0

(
n + α

k

)(
n + β

n− k

)
(x− 1)n−k(x + 1)k

Jacobi polynomials are used because they define a set of orthogonal func-

tions on [0, 1], while satisfying the correct boundary conditions. This means

that by using a sufficiently large number of polynomials, any (smooth) tra-

jectory of θ can be captured (in the least squared sense). In practice, the
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first three polynomials were used (because the coefficients became very small

after this). The value of the cost function was evaluated at 1000 steps of λ.

For model (ii), the best fit logarithmic spiral

r = aebθ

was fit to the trajectory in fingertip space, in a least squares sense. The

joint angles that produce this endpoint were uniquely determined, because

of the assumption made about the relationship between the proximal and

distal interphalangeal joints, and were found by modeling each joint angle

as a 5th order polynomial and then selecting the parameters such that the

forward kinematics are best satisfied.

The third model used was:

iii. The minimum torque-change model (Uno et al., 1989), which was used

to predict the path and the time course.

For this model, Jacobi polynomials were also used:

θ(tn) = θ0 + (θf − θ0)
(
6t5n − 15t4n + 10t3n

)
+

N∑
k=0

cikφ
(3)
k (tn), 0 ≤ tn ≤ 1

(5.16)

In this case, the first two terms describe a polynomial that satisfies the

boundary conditions of the minimum torque-change model, namely, that the

velocities and accelerations at the start and end are zero, as described in

Nakano et al. (1999). For this model, the joint angles are modeled as a func-

tion of normalized time tn = t
tf

, because the path and velocity profiles cannot

be derived independently as with the previous models. In this case, the Ja-

cobi polynomials are constructed with a basis where m = 3, corresponding

to an expansion scheme of order m = 3.

The cost function used for the minimum torque-change model was

Cτ =
1

2

∫ (
dτ(θ)

dt

)T (
dτ(θ)

dt

)
dt (5.17)

The torque is calculated using the first two terms (inertia and Coriolis) in
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Equation (3.1). The effects of gravity are neglected.

The fourth model was

iv. The minimum angular jerk model (Okadome & Honda, 1999; Hermens

& Gielen, 2004) was used to predict the path and the time course. That

is, each joint will have a trajectory determined by Equation (5.13), ex-

cept the parameter will be the joint angle, rather than the arc length.

This implies that there is a linear relationship between the metacar-

pophalangeal joint and the proximal interphalangeal joint.

This model does not require the use of optimization to determine its

trajectory.

For all the models, the distal interphalangeal joint (θDIJ) was assumed to

be determined by the proximal interphalangeal joint, based on the findings

of previous papers (Hahn et al., 1995). For each movement, the relationship

between θPIJ and θDIJ was modeled by a 3rd order polynomial:

θDIJ = p1θ
3
DIJ + p2θ

2
DIJ + p3θDIJ + p4

This was used, rather than a linear relationship as was suggested in Hahn

et al. (1995), because at the extremes of the joint range, the linear relation-

ship does not hold.

The minimization of the cost functions was performed in Matlab, using

the non-linear optimization function in the Optimization toolkit. The torque

for all the movements was estimated using the first two terms (inertia and

Coriolis) in Equation (3.1). The effects of gravity are not included.

Quality of fit The quality of the predictions was compared by calculat-

ing the root mean square error (RMSE) between the predictions and the

experimental data for Cartesian (xy) endpoint data Exy with respect to the

normalized arc length σ, and for the Cartesian endpoint velocities Evel and
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the joint angles Eposture with respect to normalized time:

Exy =

√√√√ 1

N

N∑
i=1

(xe(σi)− xp(σi))2 + (ye(σi)− yp(σi))2

Evel =

√√√√ 1

N

N∑
i=1

(ẋe(ti)− ẋp(ti))2 + (ẏe(ti)− ẏp(ti))2

Eθ =

√√√√ 1

N

N∑
i=1

(θe(ti)− θp(ti))2

Eposture = EθMPJ
+ EθPIJ

+ EθDIJ

(5.18)

The subscript p denotes the prediction of the model, and e the experimentally

recorded data. The error in terms of the posture (joint angles) was calculated

by summing the errors over the angles.

The first error measure considers differences only in the endpoint paths,

whereas the second measure also considers the velocity profiles. The third

error measure captures the differences in the joint angle trajectories with

respect to time.

The errors of the different models in terms of the RMSE for the path,

Cartesian endpoint velocity, and joint angle data were compared using multi-

ple t-tests, with the Bonferroni correction applied to prevent spurious results

due to the multiple comparisons. All results stated as being significant are

at the 0.05 confidence level, after the Bonferroni correction.

5.3 Results

Logarithmic spiral parameters The logarithmic spiral parameters a and

b were fit for each movement, and are plotted for each subject in Figures 5.2

and 5.3.

The a parameter varies very little, although it was not found to be equal to

the length of the outstretched finger, as was suggested in Equation 5.7. The b

parameter shows considerable variation, and was not found to equal the value
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Figure 5.2: The logarithmic spiral a value from Equation (5.2), plotted for
the four subjects compared to the trial number. The solid line is the value
of the length of the outstretched finger l = l1 + l2 + l3 (Equation 5.7), which
varies between subjects.
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Figure 5.3: The logarithmic spiral b value from Equation (5.2), plotted for
the four subject compared to the trial number. The solid line is the value of
b that would be expected if k = φ ≈ 1.618, i.e., r(θ + 2π) = 1.618r(θ).
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expected if the ratio between radii on successive whorls was k = φ ≈ 1.618.

Rather, for many of the movements, the b value was close to zero. A b value of

zero (equivalent to a k value of 1) means that the logarithmic spiral becomes

a circle.

5.3.1 Minimum jerk fit

The fit of the parameters of 5th order polynomials to the arc length s(t)

and the three joint angles θMPJ(t), θPIJ(t) and θDIJ(t) for the four fingers,

across the four subjects, are shown in Tables 5.1 and 5.2. To demonstrate

this visually, the arc length is plotted against time for the index finger and

compared to a minimum arc length jerk trajectory in Figure 5.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized time

ar
c 

le
ng

th

Figure 5.4: Normalized arc length plotted against normalized time for Sub-
ject 1, index finger for the grasping movements (in blue), compared to an
ideal minimum arc length jerk cost trajectory (in red).

For many of the subjects and fingers, the arc length trajectory is reason-

ably close to a minimum jerk one. As can be observed in Figure 5.4, although

there is some variation, the arc length trajectories all have a similar shape

to the minimum jerk trajectory.
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Subject Error inertia log spiral minimum minimum
measure cost torque change angular jerk

1 Exy(×10−4) 15.67(±20.78) 2.04(±1.98) 51.31(±64.86) 9.08(±18.68)
Evel(×0.01) 2.49(±2.43) 3.04(±2.23) 3.67(±3.29) 2.44(±2.56)
Eθ(×0.1) 20.12(±11.65) 15.99(±5.62) 49.29(±25.36) 9.65(±7.21)

2 Exy(×10−4) 13.10(±10.99) 4.08(±3.25) 57.49(±55.37) 8.07(±8.13)
Evel(×0.01) 2.57(±1.71) 3.52(±2.16) 3.74(±2.85) 2.61(±1.78)
Eθ(×0.1) 14.60(±6.16) 12.28(±5.81) 47.72(±21.47) 9.63(±4.73)

3 Exy(×10−4) 6.58(±5.59) 1.95(±1.73) 25.27(±26.58) 3.46(±3.94)
Evel(×0.01) 2.21(±1.40) 2.55(±1.36) 2.47(±1.75) 2.27(±1.41)
Eθ(×0.1) 7.76(±4.13) 10.96(±1.12) 20.02(±5.59) 5.06(±2.97)

4 Exy(×10−4) 9.12(±10.70) 1.80(±3.84) 24.86(±28.76) 5.53(±10.51)
Evel(×0.01) 3.07(±1.66) 2.98(±1.08) 4.02(±1.96) 2.89(±1.87)
Eθ(×0.1) 11.99(±5.20) 15.42(±2.27) 24.60(±11.07) 5.75(±5.28)

Table 5.3: The goodness of the fit for the four models - (i) minimum kinetic
energy (inertia cost), (ii) best fit logarithmic spiral, (iii) minimum torque-
change model and (iv) minimum angular jerk model.

For θMPJ and θDIJ , there is a reasonable fit for only some of the fingers

for some of the subjects, whereas for θDIJ , the fit is generally poor.

5.3.2 Fit of the path

The goodness of the fits of the four models to the experimentally recorded

data, in terms of the error measures defined in Equation (5.18), are sum-

marized in Table 5.3. Six examples of the fits for Subject 2 for the models

described above are presented in Figure 5.5. This figure shows the fit to the

path, and the three joint angles. Figure 5.6 presents the torque predictions

for the three joints, where the torque was calculated using Equation (3.1).

From Figure 5.5, it can be observed that for the path, the minimum torque

change model predicted a path with curvature opposite to that observed in

the other models. In terms of the joint angles, it can be observed that the

medial phalange moves more than the other phalanges of the finger. The

shape of the joint angles trajectories were similar (although scaled) between

the different movements and joints.

In Figure 5.6, where the torque is plotted for the different models, the
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Subject Error inertia log spiral minimum minimum
measure cost torque change angular jerk

1 Exy(×10−4) 17.91(±23.03) 1.69(±1.57) 70.00(±76.65) 5.26(±16.34)
Evel(×0.01) 4.85(±4.89) 4.69(±4.25) 6.04(±3.95) 5.17(±5.01)
Eθ(×0.1) 20.06(±11.14) 17.83(±2.76) 43.57(±15.91) 8.77(±8.82)

2 Exy(×10−4) 14.58(±11.48) 3.68(±3.29) 116.14(±73.42) 8.58(±9.82)
Evel(×0.01) 2.64(±1.31) 3.18(±1.26) 6.09(±2.79) 2.64(±1.31)
Eθ(×0.1) 10.55(±4.95) 7.44(±2.30) 51.87(±28.46) 6.45(±3.31)

3 Exy(×10−4) 4.04(±2.67) 1.32(±1.66) 26.63(±30.21) 2.01(±1.61)
Evel(×0.01) 1.81(±0.84) 1.92(±0.78) 2.58(±1.59) 1.82(±0.95)
Eθ(×0.1) 4.17(±1.66) 4.67(±0.54) 12.46(±3.90) 2.44(±1.86)

4 Exy(×10−4) 6.06(±11.58) 0.82(±0.95) 13.41(±15.64) 5.94(±11.61)
Evel(×0.01) 1.85(±1.14) 2.21(±1.29) 2.22(±1.22) 1.77(±1.22)
Eθ(×0.1) 2.92(±2.21) 5.01(±0.73) 10.62(±6.98) 2.57(±2.08)

Table 5.4: The goodness of fit for the four models with the added 20g weight
on the medial phalange, as described in Table 5.3.

models produce similar predictions, but these are sometimes slightly different

from the experimentally recorded torque.

The following results refer to comparisons using multiple t-tests, after tak-

ing into account the Bonferroni correction. In terms of path, the logarithmic

spiral model was significantly better than all the other models, followed by

the minimum angular jerk, inertia cost and torque change. Each model in

turn was significantly better than all the following models. In terms of joint

angle, the minimum angular jerk showed the best fit, significantly better than

the others. The logarithmic spiral and inertia cost models were not signifi-

cantly different for joint angle error, but both were better than the minimum

torque change model. In terms of xy velocity, the minimum angular jerk and

the inertia cost are not significantly different, and both of them have a lower

error than the logarithmic spiral and the minimum torque change model.

The fits of the model when a weight of 20g was added to the medial

phalange are presented in Table 5.4. An example of the fit for Subject 2

is presented for the endpoint and joint angles in Figure 5.7 and the joint

torques in Figure 5.8.

With the added weight, the multiple t-tests gave the same conclusions for
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the path and joint angle error. The xy velocity error measure in this case

showed only that the logarithmic spiral model, the minimum angular jerk

model and the inertia cost were all better than the minimum torque change

model, but other differences were not statistically significant.

When comparing the predictions of the same model between the initial

experiments and the experiments with the added weight, the prediction was

significant worse with the added weight for only the minimum torque change

model (for all 3 error measures).

As an additional comparison between the 3 best models, the error values

Evel and Eθ were plotted against the arc length, to see if the errors are

constant with respect to increasing arc length. This comparison is plotted in

Figure 5.9.

0 0.5 1 1.5 2 2.5 3
x 104
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Figure 5.9: The error measures (a) Exy and (b) Eθ, plotted against the arc
length for the inertia cost model (blue), the log spiral model (red) and the
minimum joint jerk model (green). The dots are the data from the condition
without the weight, whereas the starts are from the condition with the weight.
The lines are the regression lines for the appropriate model.

For the Exy error measure, which measures only the path, the inertia cost

model clearly produces worse predictions with larger arc length, while the

other two models produce approximately constant errors across the range of

arc lengths. For the Eθ measure, which also takes into account the velocity
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profile, all the measures increase error with increasing arc length, although

the inertia cost model increases at a higher rate.

5.4 Discussion

During grasping movements, the fingers have been observed to show stereo-

typical trajectories. The minimum arc length jerk trajectory was observed to

predict reasonably well the arc length as a function of time, and hence define

the velocity of the movement. This is similar to findings found in works for

the arm (Biess et al., 2006a). The additional invariance observed in the path

supports the notion that planning of the geometric aspects (i.e., the path),

and the temporal aspects (i.e, the speed along this path) may be decoupled

(Torres & Zipser, 2004).

The fingertip paths were well fitted by logarithmic spirals. While the

a parameter, which determines the width of the spiral, was approximately

constant across movements, significant variation was observed in the b pa-

rameter, which determines the rate of growth of the spiral. Additionally, the

b parameter observed was not close to that found when the rate of growth

is equal to the golden ratio, 1.618, as has been speculated but not tested

in several papers (Littler, 1973; Park et al., 2003; Markley, 2003). Rather,

the b parameter was generally found to be closer to zero, in which case the

logarithmic spiral becomes a circle.

The joint trajectories observed showed that the medial phalange moved

more than either the proximal or distal phalanges. This is consistent with the

notion of reducing a kinetic energy related cost, as accelerating the lighter

medial phalange requires less force than accelerating the proximal phalange

(which also must rotate the other phalanges with it). The reason that the

distal phalange, which weighs the least, and theoretically would not require

rotating the other phalanges is not rotated more seems to be due to biome-

chanical constraints which prevent it from rotating independently.

The minimum torque change model was found, in general, to predict the

path and trajectories significantly worse than the best 3 models. It predicted

fingertip paths with a curvature opposite to that observed in the experimental
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data. Furthermore, when the weight was added, changing the inertia of the

finger and thus also the torque, the predictions became worse. Hence, there

seems to be little support for this model in predicting index finger motion

during grasping.

The other three models (the inertia cost, the minimum angular jerk and

the logarithmic spiral path model) produced similar predictions for the path,

velocity and angular trajectories, both with and without the weight. When

considering only the path, the logarithmic spiral model performed the best,

whereas when considering the joint angle trajectories with respect to time,

the minimum angular jerk model performed best.

However, when the error in terms of the path were plotted against the

arc length, the inertia cost model produced worse predictions with longer

arc length, whereas the other two models produced approximately constant

errors. This means that for longer movements, the performance of this model

deteriorates. It needs to be remembered that the path of the logarithmic

spiral model was determined by finding the best fit logarithmic spiral to the

path, and hence it is not surprising that the path error is approximately

constant across different values of the arc length. The other models were

only provided with the boundary conditions.

An apparent contradiction is observed for the minimum angular jerk

model. If each joint follows such a trajectory, this implies that the joint

angles of the finger are linearly related, as was found in a recent work (Dej-

mal & Zacksenhouse, 2006) examining manipulative movements on objects.

However, as was shown in Equation (5.8), this can not be the case if the

path is a logarithmic spiral and θPIJ and θDIJ are linearly related. Although

both assumptions cannot be true simultaneously, it seems that the difference

between the observed trajectories and the model trajectories based on both

these assumptions is small, and less than the statistical ability to differenti-

ate between the two models using this data set. Additionally, in Tables 5.1

and 5.2, the 5th order polynomial fits to the joint angle trajectories are often

not that close to the minimum jerk ones, as would be expected if minimum

angular jerk is a good model for the movements. Analysis of additional move-

ments may help determine which of these two models gives better predictions
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for the behavior.

The different models have different numbers of free parameters. The

logarithmic spiral model has two free parameters which are fitted from the

observed path. Thus, this model will have a good fit for the path if the

path is approximately a logarithmic spiral, which is the case for many short,

slightly curved movements. However, this model does not give a motivation

for why the CNS selects the observed logarithmic spiral path. The inertia-like

cost model has three parameters (the weights of the Jacobi polynomials) for

each of the two joint angles which are fitted according to the cost function.

However, these are not free parameters, rather, they enable the approxi-

mate minimization of the cost function, and are selected based on the cost

function and not from the observed trajectories. If analytic solutions to the

minimization problem were possible, then no parameters would be required.

A similar statement is true for the minimum torque-change model. Finally,

the minimum angular jerk model does not have any parameters that need to

be fitted since the analytic solution is known.

The assumption in the models that the distal interphalangeal joint angle

is fully determined by the proximal interphalangeal joint was a necessary

assumption in order to produce reasonable models. Otherwise, a model based

on minimizing a kinetic energy related cost would prefer to move more the

distal phalange, because moving this phalange alone involves moving less

weight. This was indeed observed in preliminary versions of the model that

were constructed. However, such movements appear to be biomechanically

impossible. Furthermore, the use of this assumption allowed determination

of the joint angles for the logarithmic spiral model (i.e., when given the

path), otherwise, determining the joint angles for a given endpoint path has

multiple solutions.

Finally, it should be noted that while logarithmic spirals approximate rea-

sonably well the path of grasping movements, they cannot describe general

finger movements. For example, a radial movement of the finger performed,

cannot be approximated by any logarithmic spiral. In Cruz & Kamper

(2006), where subjects were asked to make point-to-point finger movements in

the plane, the observed trajectories can not be fitted well to logarithmic spi-
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rals. Use of the models presented in this work for such trajectories would be

a good test for their generalization to more general finger movements, rather

than specifically finger movements involved in grasping, although more com-

plex movements may involve the composition of multiple sub-movements.

The examination of tasks requiring particular force and / or velocity de-

mands, for example, playing the piano, tool use, or object manipulation,

could also help determine the general applicability of such models.

The stereotypical trajectories observed in this work are based on more

than biomechanical constraints. This can be observed from patients with

problems controlling the movements of the fingers, who do not generate these

stereotypical trajectories (Littler, 1973).
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Chapter 6

Applications

In this section, two practical applications of the techniques presented in the

thesis are described. The first is the construction of a telerobotics system,

where a human operator in a virtual reality setup controls the movements and

actions of a robot. The second is the use of grasp modelling to hypothetically

predict the optimal grasps for use in some rehabilitation scenarios.

6.1 Grasp recognition for telerobotics

The experiments in Chapter 4 showed that different grasps are used on an ob-

ject depending on the type of action or manipulation that will be performed.

Based on this observation, we have designed and implemented a telerobotics

system. Rather than a human operator providing low-level instructions to

the robot (e.g., detailed trajectory and grasp points), our approach has been

to transmit high-level task information (e.g., move to this location, grasp in

order to unscrew), which we are able to abstract from recordings of the hu-

man operator’s actions. In this way, the human operator, acting in a virtual

reality setup, can naturally perform manipulations on objects, and the robot

will perform these actions in a way that is suitable for the robot.

In a previous work (Berman et al., 2005), we showed that maintaining

configurational similarity between a human demonstrator and the robot ma-

nipulator is in general not desirable. For example, a person would unscrew

111
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the lid of a jar with the long axis of their forearm parallel to the horizontal

plane, whereas for the robot we are considering here, the most efficient grasp

is for the long axis of the last link to be parallel to the vertical axis. Maintain-

ing configurational similarity in this case will cause suboptimal performance

and for many tasks will not be able to succeed. Instead, we have taken the

approach of devising a-priori a set of actions that can be performed by the

robot on a set of objects. The selection of which task to perform is based on

recognizing the intentions of the human operator.

System overview

The robot controller, running on a PC, maintains knowledge of the location,

state and type of all objects in the scene. It communicates with the human

interface using TCP/IP sockets over a network, using a specially defined

XML protocol. The robot is an articulated robot with five degrees of free-

dom (ER-VII Scorobot, Intelitek), with an electrical parallel jaw gripper as

an end effector. Initially, the robot controller sends the locations and orienta-

tions of all the objects in the scene. During use, the robot controller receives

commands to move objects and perform actions on them. It performs these

actions on the robot. When the given posture is unattainable (because the

robot has only 5 degrees of freedom), the closest achievable posture is deter-

mined using an optimization procedure. It returns to the human interface

the new state of the objects after the action is performed, or an error message

if appropriate.

The human interface involves a virtual reality setup, displayed in Figure

6.1. The operator wears a CyberGlove and Fastrak, and the hand is rendered

in real time on the display. The mirror setup shown prevents the operator

from seeing their own hand and the rendered hand appears in approximately

the location of their real hand, to make operation of the system more natural.

The computer program, written in C++ using OpenGL, and running on

a SGI Octane, also shows the objects that the robot has identified in the

scene in their appropriate locations. The operator can grasp the objects and

manipulate them. Feedback is provided via the colors of the objects.
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Figure 6.1: Virtual reality setup.

When the operator grasps an object, the type of grasp is recognized,

from the possible grasps that can be performed on such an object (from a

predefined set). Before using the simulation, the subjects undergo a short

training session, where they perform a number of grasps 10 times each. A

linear discriminant classifier is currently used, implemented in Matlab. The

features for classification are the joint angles.

The program flow of the simulation is shown in Figure 6.2. The objects in

the scene begin as being ungrasped. When three fingers including the thumb

contact with an object, this is considered a potential grasp and object turns

blue. If this grasp is held for two seconds, then the object is considered to

have been grasped. The grasp at this point is recognized using the linear

classifier, and the type of grasp and the object is sent to the robot. Once

the operator starts moving the object, updates about its position are sent

to the robot every 2 seconds if the current position is legal (if it is not

intersecting with any other object). A further signal is sent to the robot

when the operator ungrasps the object, along with its final position and
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Figure 6.2: Program flow. The flow chart represents the different states of
the program during execution. The program begins in the “ungrasped state”.
The colors represent the current color of the object.
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orientation. The ungrasped object turns red, and the simulation waits until

a response is received from the robot (i.e., after the robot has completed

the task) before allowing the human operator to continue to manipulate the

scene.

Sample usage

Preliminary tests have been performed on the system, and it is possible to

complete several tasks. For example, a set of toy blocks can be used to build

a tower, or the jar can be opened, and the contents poured into a container.

Screenshots of the human interface, and the robot performing one of the

tasks, is shown in Figure 6.3. Further testing with untrained subjects is

planned.

(a) (b)

(c)

Figure 6.3: Screenshots of (a) building a tower and (b) pouring from the jar in
the virtual reality human interface, and (c) a photo of the robot unscrewing
the lid of the jar.
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6.2 Optimal grasp prediction for use in reha-

bilitation

A potential application of the grasp modelling presented in Chapter 4 is

to suggest the “optimal” grasps for patients to use when they have limited

or impaired movement ability, perhaps after injury of some sort. While

the analysis in the thesis has focused on movements of healthy individuals,

the underlying principles can potentially be applied for grasping when full

movement of the hand is not possible. A similar analysis could also be useful

in studying grasping in infants and children, who also show limited ability

to control their finger movements. This section is a hypothetical treatment

of the issue, and has not been tested in real situations.

By applying the modeling presented in Section 4.4, the best grasps under

particular constraints can be generated. Two examples are presented here, for

lifting and unscrewing the lid of the jar. The first constraint considered is that

only a small number of fingers, in this case two, can be used to perform the

tasks. The second constraint used was that the hand has limited movement.

This was modeled by fixing the interphalangeal joint of the thumb and the

proximal and distal interphalangeal joints of the other fingers at zero.

The grasps for unscrewing and lifting the lid were selected by choosing

the grasps that maximize the following measures, based on the results of

Section 4.4

• Unscrewing - 1.5Kx + τy

• Lifting - 1.5Kx + (1− Fx) + (1− Fz)

where Kx is the normalized stiffness compatibility along the x axis, τy is the

torque production compatibility about the y axis, and Fx and Fz are the

force production compatibilities along the x and z axes.

The five best grasps for lifting and unscrewing the lid with two fingers

are shown in Figure 6.4.

For lifting the lid (Figure 6.4a), the two fingers are placed on opposite

sides of the lid, with the phalanges of the thumb and the index finger ap-

proximately parallel. For unscrewing the lid, this is not the case - while the
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(a) Lifting the lid

(b) Unscrewing the lid

Figure 6.4: The five “best” two finger grasps for the two tasks on the lid.

(a) Lifting the lid

(b) Unscrewing the lid

Figure 6.5: The five “best” grasps under the constraints that the interpha-
langeal joint of the thumb and the proximal and distal interphalangeal joints
are zero for the two tasks on the lid.

thumb grasps the lid in a similar way, the index finger grasps the lid from a

different angle. The third example grasps the lid with the side of the index

finger.

The five best grasps for lifting and unscrewing the lid with four fingers,

under the constraint that the interphalangeal joint of the thumb and the

proximal and distal interphalangeal joints at zero are shown in Figure 6.5.

For lifting the lid, the thumb is placed on one side, and either the other three

fingers are placed opposite, or two fingers are placed at one location, and the

fourth finger at another location. In order to unscrew the lid, two strategies

were observed. Either the object is grasped with the side of the fourth finger
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(the first three grasps) with the thumb parallel to the index finger, or the

index, middle and ring fingers are parallel, and the thumb is rotated. This

second strategy was not observed in the experiments.

These two examples indicate the potential of such a technique for use in

rehabilitation. For use in a real situation, the model should take into account

the geometry of the patient’s hand, the size of the objects and the accuracy

with which they are able to perform movements.



Chapter 7

Summary and conclusions

The field of human grasping presents many questions that require further

research. The aim of this research has been to model the human fingers and

hand using the tools of robotics, and to use these models to obtains insights

into the invariant properties of our behavior during grasping. Despite the

large amount of variance observed in finger movements and during grasping,

we aim to extract the common features across movements and subjects and

to interpret them. In particular, this thesis has focused on several areas.

The impedance properties of the hand have been modeled, grasp choice for

a selection of different tasks have been compared, and the finger trajectories

used during grasping have been described.

The impedance properties of the index finger were estimated through a

series of experiments with a novel protocol, described in Section 3.1.3. While

maintaining a posture, the index finger was repeatedly perturbed using ar-

tificial tendons attached to an exoskeleton, and the resulting motion was

recorded. Using an optimization approach with several constraints, the in-

ertia of the finger was derived, and the values found were similar to those

predicted by a geometric model. While the force required to accelerate the

finger (measured by the inertia) is much smaller than the forces required to

displace the finger (measured by the stiffness), the inclusion of the inertia

term is important for accurately modeling the finger, particularly at high

accelerations. It was shown in Section 3.1.4 that using a full dynamic model

119
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sampled at many time points predicts significantly better the force than us-

ing only a first order model (i.e., just stiffness) calculated from the total

magnitude of force and displacement.

Two main problems were found with this technique - the first was that

there is a non-negligible amount of variation in the force profiles generated

by the CyberGrasp exoskeleton (see Figure 3.3). The second is that the

directions of force application were all very similar, which makes robust es-

timation of the impedance terms difficult (see Figure 3.11). Ideally, this

procedure would be repeated with a different device that produces more ac-

curate force profiles, and in many directions.

A technique was also presented for interpolating the stiffness between

stiffness values recorded at different postures (in Section 3.2). This tech-

nique involved estimating the joint stiffness as a function of the joint angle,

and from this determining the endpoint stiffness. This method was used in

modeling the stiffness of the grasp at unmeasured postures.

The use of a tool or manipulation of an object requires that certain move-

ments and forces be applied to the object or tool. The redundancy of the

kinematic degrees of freedom within the hand means that in general, many

grasps can be selected that satisfy the basic need for grasp stability. The

grasp can be selected such that applying the desired motion or force can be

performed in an efficient and accurate manner. In addition, the impedance

properties of the grasp will affect the stability of the grasp, and how it handles

errors. This work has attempted to describe how the selected grasp posture

and stiffness affect the ability to manipulate objects and the suitability of

the grasp for different manipulation tasks.

The grasps used during a series of manipulation tasks were examined.

Based on measurements of the posture of the hand using the CyberGlove,

described in Section 4.2, the grasp Jacobian was constructed. This allows the

calculation of force and velocity transmission ellipses, which define the force

or velocity that can be produced in a particular direction when the squared

sum of the joint torques / velocities is 1. Additionally, all grasping fingers

were simultaneously perturbed using the CyberGrasp, while grasping the

object as if to manipulate it, in order to estimate the stiffness of the fingers.
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By making an assumption about the unmeasured abduction stiffness, the

grasp stiffness was also estimated.

While a large amount of variation was observed among different subjects

in the number of fingers used, and the finger placement on the objects, some

common patterns were observed, as described in Section 4.3. By examining

the relative force and velocity production and stiffness properties between

different types of manipulation on the same object, it was possible to observe

patterns that were sometimes related to the requirements of the task.

This approach was extended using an optimization technique in Sec-

tion 4.4, where a large number of legal grasps were computer generated.

The grasps were generated such that they used the same number of fingers

as the subject used during the experiments, and had the same joint ranges.

Only grasps that were “legal” were considered, that is, if the posture of

the hand could be feasibly used to grasp the object. The properties of the

computer generated grasps were compared with the grasps selected by the

subjects, in terms of their stiffness, and force and velocity production capa-

bilities. This approach was used rather than standard optimization (where

the parameters are varied in some way) because making small changes to a

feasible grasp generally results in an unfeasible grasp, thus, it is difficult to

vary the parameters in order to improve on some cost measure.

The normalized compatibility scores for the grasps for velocity or force

production, and for stiffness, were calculated along the x, y and z axes, by

determining for the proportion of computer generated grasps with a lower

compatibility score. When the normalized compatibility scores across sub-

jects and repetitions were significantly different from 0.5, it was assumed that

this may signify that this parameter may have been optimized (minimized

or maximized), as summarized in Tables 4.4 and 4.5. Several of the values

that appear to have been optimized were related to the task requirements.

Evidence for task-based grasp planning has been provided by neural

recording studies. Neurons in behaving monkeys in area F5 (in the rostral

part of inferior area 6) have been observed to show selectivity for different

types of grasping, namely precision grip, finger prehension and whole-hand

prehension (Rizzolatti et al., 1988) and for the type of object (Raos et al.,
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2006). The selectivity for grasp type, and not only for object type or size,

suggests that there is a representation across objects used for the type of

interaction, which may be based on the requirements or goals of the task.

Area F5 is believed to be the monkey homologue of Broca’s area in humans

(Rizzolatti & Arbib, 1998). In area F2, in the caudal part of area 6, neu-

rons were also observed that were selective for the type of grasp (Raos et al.,

2004). These authors have suggested that these areas (F2 and F5) collab-

orate in the control of grasping. Neurons in the anterior intraparietal area

(area AIP) in monkeys have also been found to be selective for visual re-

sponses to the shape, size and orientation of objects for grasping (Murata

et al., 2000). Raos et al. (2006) suggested that the network of F5, F2 and

AIP play complementary roles in the planning and execution of grasping

movements.

While the present work has described some of the features of several types

of manipulation, much further work needs to be done to fully understand how

humans select grasps in order to manipulate objects. First, the number of

fingers selected for manipulation requires further investigation. Theoretical

work in robotics has characterized the minimum number of fingers necessary

for properties such as force closure (for example, Mishra et al. (1987)). It is

not clear how these results are reflected in the number of fingers selected by

humans.

A source of uncertainty in the grasp model was introduced by the lack of

measurements of the abduction stiffness. Measurements of the applied fin-

gertip abduction forces would allow better modeling of the three dimensional

fingertip stiffness and hence grasp stiffness. This may be possible using in-

strumented objects. Use of a full impedance model (including damping and

inertia) for grasping could also contribute to the accuracy of the model, but

would require a more accurate measurement device.

The translational and rotational stiffness ellipsoids plotted provided vi-

sualizations of the upper left and lower right quadrants, respectively, of the

grasp stiffness matrix. The upper right quadrant of the grasp stiffness matrix

represents the relationship between angular motion and translational forces,

while the lower left quadrant represents the relationship between transla-
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tional motion and torques. Further analysis needs to be performed to ex-

amine the patterns observed in these quadrants and their relationship to the

selected tasks being performed.

Features of a grasp, in addition to the velocity and force transmission

and stiffness characteristics, such as the available joint movements and dis-

tances from singularities can be defined (Shimoga, 1996). Additional invari-

ant properties of the grasps which are selected may be revealed by further

investigation of such features.

The finger trajectories used to perform these grasps were also examined.

Invariant velocity profiles were observed on the Cartesian arc length along

the path, and the velocity profiles minimized a cost consisting of the integral

of the squared arc length jerk (Section 5.3.1). Based on this finding, it seems

that the path and speed are planned separately. Three models were found to

model well these trajectories, namely, minimizing a cost function that is the

integral of the weighted squared joint derivatives along the path, following a

logarithmic spiral, and minimizing angular jerk, as detailed in Section 5.3.2.

The predictions of these models were significantly better than the predictions

when using the minimum torque change model. When adding a weight to

medial phalange of the finger, thus changing its inertia, the three best models

produced errors that were not statistically significantly different, although for

the minimum torque change model, the errors increased.

The separation of the planning of path, and the dynamics and velocity

profile, as is suggested by the results of the modeling of the finger trajectories,

is an attractive notion (Torres & Zipser, 2002; Biess et al., 2006a). This would

allow different types of information to be involved in the planning of each

feature, and would easily allow the scaling of the movement in time or in

space.

7.1 Potential directions for future research

Several potential directions can be suggested as a result of the work described

here. While the grasping model presented described the theoretical force and

velocity transmission capabilities, these predictions have not been tested.
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Such testing would be a useful confirmation of the power of the model, and

could be performed by measuring the force production when subjects grasped

objects in different ways and comparing these to the model predictions. Sim-

ilarly, in order to confirm the stiffness predictions of the model, the subject

can grasp a manipulandum, while the arm is braced. By applying small

forces to the grasped object and measuring the resultant displacement, the

grasp stiffness can be estimated, and compared to the stiffness predicted by

the model.

It has been observed that the direction of the major axis of the arm

stiffness ellipse is approximately aligned with a radial line joining the shoulder

to the hand (Mussa-Ivaldi et al., 1985; Flash & Mussa-Ivaldi, 1990). Milner

& Franklin (1998) noted that the orientation of the fingertip stiffness ellipse

maintained a relatively fixed direction for each (of two) measured postures,

approximately parallel to the axis of the proximal phalanx of the finger (i.e.,

it never varied by more than 20◦). This rule was not in general observed

from the data collected in these experiments. It would be instructive to

collect stiffness data from a large number of postures, under different force

conditions, to see if this, or an alternative rule can be found.

Currently, the velocity and force transmission properties were only ex-

amined at the start of manipulation. The time development of the velocity

and force ellipsoids throughout grasping and manipulation should also be

studied, in particular by examining the ellipsoids during grasp “gait” (i.e.,

performance of rhythmic tasks), and their relation to the changing demands

of the manipulation with time.

Finally, although the observed features of grasping show a connection be-

tween the task and the kinematic and stiffness properties, it is unclear how

such grasps could be efficiently constructed. Further research could focus on

the form of candidate primitives for grasping, and how the observed grasps

may be constructed from them. While kinematic synergies have been ob-

served in generating hand postures during grasping (Santello et al., 1998;

Mason et al., 2001; Santello et al., 2002), and in this work, stereotypical

finger trajectories have been observed and described, primitives need to be

also related to the manipulation and dynamic properties of the grasp. Pre-
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liminary work was carried out on describing the movements of the fingers

during grasping using non-negative matrix factorization of the joint angles

trajectories. By using such representations, it might be possible to define

a low-dimensional, continuous space under which optimization for desired

properties could be performed, and eventually the optimal combinations of

these synergies determined for performing grasping and manipulation.

One step in this direction would be the construction of a grasp taxonomy

for objects of many shapes and sizes, for a variety of different tasks (defined

by their stiffness and force production demands). The selected postures

used, and their optimality in terms of the compatibility measures described

here may provide further insights into the mechanisms used by the CNS for

planning grasping movements.
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Appendix A

Glove Calibration

Nomenclature

φj Joint angle of joint j.

σj Raw data from sensor j.

θj Offset of sensor j.

gj Gain of sensor j.

gk
j Cross gain (effect of sensor k on j).

Lj Length of link j.

ABD Abduction / adduction of metacarpophalangeal joint.

MPJ Extension / flexion of metacarpophalangeal joint.

PIJ Extension / flexion of proximal interphalangeal joint.

DIJ Extension / flexion of distal interphalangeal joint.

PA Palm arch.

IJ Thumb interphalangeal joint.

T 1
2 Homogenous transformation (4× 4) matrix from frame 1 to frame 2.

Introduction

The CyberGlove (Immersion) contains 22 sensors that measure the joint an-

gles of the hand. The sensors are located over or near the joints of the hand

and wrist, and each sensor is designed to produce an output which has a

linear relationship to the appropriate joint angle. The CyberGlove produces

127
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a raw output as an integer between 0 and 255, which can be converted into

joint angles by the relationship:

φj = θj + gjσj

The values of θj and σj will be different for each subject, as they are

dependent on how the glove sits on the joints. Hence a calibration technique

is necessary to determine these values. Additionally, some sensors are affected

by more than one joint. Cross gains gk
j were used to take this into account:

φj = θj + gjσj +
22∑

k=1

gk
j σj (A.1)

where gk
j is the effect of sensor k on joint j. In the calibration procedure

used, most of the cross gains were assumed to be zero.

The calibration routine provided with the CyberGlove does not calibrate

for finger lengths and provides only a very basic calibration of the joint

angles (the calibration is only performed on the thumb and index finger).

Hence when looking at the visualization of the hand based on this model,

the positions of the fingertips often do not correspond well with the actual

fingertip locations. Hence an alternative calibration technique was needed.

Previous works

Several calibration techniques have been proposed in the literature. Open-

loop kinematic calibration (Rohling & Hollerbach, 1993, 1994; Fischer et al.,

1998) involves using an external measuring device, which measures the 3D

location of the fingertips while simultaneous recordings are made from the

glove. The fingertip location is estimated based on an open-loop kinematic

chain from the glove recordings and model parameters. The error between

this estimation and the value recorded from the external measuring device is

minimized by altering the model parameters, usually in an iterative process.

Calibration can also be performed by placing the joints at specified an-
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gles while measuring from the glove (Kessler et al., 1995; Kamper et al.,

2003). Regression is then used to determine the relationship between the

sensor readings and the joint angles. Similarly, computer vision techniques

can be used by placing colored stickers on the joints (Chou et al., 2000),

allowing estimation of the relative joint lengths and the other model param-

eters. However, it is impossible to place the stickers exactly on the joints

(because the joint is inside the finger) and the distance of the marker from

the joint will also vary with the posture as the skin moves.

Another class of calibration techniques are known as zero-hardware tech-

niques, in that they do not require any external device to perform the calibra-

tion. Menon et al. (2003) recorded the hand in a variety of known postures,

and then performed linear regression between the actual joint angles and the

glove recordings to determine the calibration parameters. In Griffin et al.

(2000); Turner (2001), measurements were made from the CyberGlove while

subjects made movements where they were required to ensure that the tip of

the thumb and the tip of a specified finger were always touching. It is possible

to then construct a kinematic chain of the two touching fingers, and use as

the error the distance between the two fingertips in an iterative optimization

procedure.

Implementation

The calibration technique that was used here is based on the technique pro-

posed by Griffin et al. (2000); Turner (2001). This technique is an example

of a zero-hardware solution.

The basis of the algorithm is to record data where the subject holds two

fingertips (the thumb and one of the other fingers) together in a range of

postures. The location of the relevant fingertips can be written as a function

of the joint angles and the calibration parameters. The error in the current

calibration parameters is defined as the distance between the appropriate

fingers. This distance would be zero with a perfect calibration. The error is

minimized simultaneously over the fingers used in the particular task (up to 4

finger/thumb combinations). Constraints were placed on the allowable values
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Finger Offset Gain
Thumb θTTR

θTMPJ
θTABD

θTMCtwist
gTTR

gTMPJ
gTIJ

gTABD

Index θIMPJ
θIPIJ

θIDIJ
θIABD

gIMPJ
gIPIJ

gIDIJ
gIABD

Middle θMMPJ
θMPIJ

θMDIJ
θMABD

θMTWI
gMMPJ

gMPIJ
gMDIJ

gMABD

Ring θRMPJ
θRPIJ

θRDIJ
θRABD

gRMPJ
gRPIJ

gRDIJ
gRABD

Pinky θPMPJ
θPPIJ

θPDIJ
θPABD

θPPA
gPMPJ

gPPIJ
gPDIJ

gPPA

Palm θPITCH θY AW gPITCH gY AW

Finger Lengths Cross gains

Thumb LT1 LT2 LT3 LT4 gTABD
TTR

gTTR
TABD

gTTR
TMCtw

gTABD
TMCtw

Index LI1 LI2 LI3 LI4 LI5 gMABD
IABD

gRABD
IABD

Middle LM1 LM2 LM3 LM4 LM5 gIABD
MABD

gRABD
MABD

gMMPJ
MPIJ

Ring LR1 LR2 LR3 LR4 LR5 gIABD
RABD

gMABD
RABD

gRMPJ
RPIJ

Pinky LP1 LP2 LP3 LP4 LP5 gIABD
PABD

gMABD
PABD

gRABD
PABD

gPMPJ
PPIJ

Table A.1: The 87 parameters used in the calibration. Novel parameters
not found in other models include the palm arch, twist of the middle finger
θMTWI

and many of the cross gains.

for the calibration parameters to prevent trivial solutions. If no constraints

were applied, an optimal solution would be to set all the gains to zero and

to adjust the offsets so that the fingers always touch. The constraints were

defined such that no parameter was allowed to change too much from the

starting guess.

The calibration was performed over 87 parameters, listed in Table A.1.

These parameters consist of the offsets, gains and cross gains (in Equa-

tion (A.1)). The fingertip locations were calculated using the model shown

in Figure A.1.
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φIP IJ

φIMP J

φIDIJ
φMDIJ

φMP IJ

φMMP J

φPP IJ

φPMP J

φPDIJ

φRP IJ

φRDIJ

φTT R
φTABD

φTMC−tw
φTMP J

φTIJ

LI1

LI2

LI3

LI4LM4

LM1

LR3

LR4LP4

LP3

LP2 LR2

LM3

φRMP J

LP1 LR1

LM5

LR5

LP5

LP5/2
φPABD

φRABD

φMABD
φIABD

φP A

LT1

LT2

LT3 LT4

φMT W I
LM2

Figure A.1: The hand model used for calculating the grasp Jacobian, finger-
tip positions and in the calibration. All joints are modeled as revolute joints,
visualized using cylinders. The abduction (ABD) and metacarpophalangeal
joint (MPJ) axes pass through the same point. LTi, LIi, LMi, LRi and LPi

represent the lengths of the ith metacarpal or phalange of the thumb, index,
middle, ring and pinky finger respectively. The lengths were determined
from the calibration procedure. The joint angles φ of the distal interpha-
langeal joints (DIJ), proximal interphalangeal joints (PIJ), metacarpopha-
langeal joints (MPJ), abduction joints (ABD), palm arch (PA), thumb rota-
tion (TR) and thumb interphalangeal joint (IJ) were assumed to be linearly
related to the raw CyberGlove data measured. The parameters of these re-
lationships were determined for each subject in the calibration procedure.
This model incorporates the measured palm arch, and the fixed (in the cali-
bration sequence) twist of the middle finger, which are not included in other
published models of the hand, but were found to be required to model well
grasping movements of the hand.
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The forward kinematics were calculated using the appropriate equations.

For the thumb:

T 0
TR =


0 0 −1 0

sin φTTR
cos φTTR

0 0

cos φTTR
− sin φTTR

0 0

0 0 0 1



T TR
ABD =


cos φTABD

− sin φTABD
0 LT1

0 0 1 0

− sin φTABD
− cos φTABD 0 0

0 0 0 1



TABD
MPJ =


cos φTMPJ

− sin φTMPJ
0 LT2

sin φTMPJ
cos φTMCtwist

cos φTMPJ
cos φTMCtwist

− sin φTMCtwist
0

sin φTMPJ
sin φTMCtwist

cos φTMPJ
sin φTMCtwist

cos φTMCtwist
0

0 0 0 1



TMPJ
IJ =


cos φTIJ

− sin φTIJ
0 LT3

sin φTIJ
cos φTIJ

0 0

0 0 1 0

0 0 0 1



T IJ
tip =


1 0 0 LT4

0 1 0 0

0 0 1 0

0 0 0 1


T 0

tip = T 0
TR T TR

ABD TABD
MPJ TMPJ

IJ T IJ
tip

where T 1
2 is the homogeneous transformation from frame 1 to frame 2 for the

thumb, the joint angles φ and lengths L are as shown in Figure A.1.
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For the index finger:

F 0
ABD =


cos φFABD

0 sin φFABD
LF1

0 1 0 0

− sin φFABD
0 cos φFABD

−LF5

0 0 0 1



FABD
MPJ =


cos φFMPJ

− sin φFMPJ
0 0

sin φFMPJ
cos φFMPJ

0 0

0 0 1 0

0 0 0 1



FMPJ
PIJ =


cos φFPIJ

− sin φFPIJ
0 LF2

sin φFPIJ
cos φFPIJ

0 0

0 0 1 0

0 0 0 1



F PIJ
DIJ =


cos φFDIJ

− sin φFDIJ
0 LF3

sin φFDIJ
cos φFDIJ

0 0

0 0 1 0

0 0 0 1



FDIJ
tip =


1 0 0 LF4

0 1 0 0

0 0 1 0

0 0 0 1


F 0

tip = F 0
ABD FABD

MPJ FMPJ
PIJ F PIJ

DIJ FDIJ
tip

The matrices for the middle finger are identical, except for the addition of

the twist term, which changes one matrix:

MABD
MPJ =


cos φMMPJ

− sin φMMPJ
cos φMTWI

sin φMMPJ
sin φMTWI

0

sin φMMPJ
cos φMMPJ

cos φMTWI
− cos φMMPJ

sin φMTWI
0

0 sin φMTWI
cos φMTWI

0

0 0 0 1


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The ring finger is the same as the index finger, apart from the introduction

of the “palm arch”. This models the way that the palm can close to allow

opposition between the thumb and the ring and pinky fingertips (which is

otherwise impossible). The matrices that take this into account are:

R0
PA =


1 0 0 0.5LR1

0 cos φPPA
− sin φPPA

0

0 sin φPPA
cos φPPA

−0.5LP5

0 0 0 1



RPA
ABD =


cos φRABD

0 sin φRABD
0.5LR1

0 1 0 0

− sin φRABD
0 cos φRABD

−LR5 + 0.5LP5

0 0 0 1



The transformations for the pinky are analogous to those of the ring finger.

The optimization was performed using the non-linear least squares opti-

mization in Matlab.

Results

As an example of the performance of the algorithm, a data set consisting of

the static finger spelling alphabet of American Sign Language was collected.

The postures of the hand using the calibration that is provided with the glove

(the “default” calibration) were compared to the results of the algorithm

described here. The images were rendered on a Silicon Graphics machine

using a program written using OpenGL and the “Virtual Hand” API provided

by Immersion, and compared to a frame taken from a simultaneously recorded

video. The rendered images were manually rotated to match the video frame.

The results are shown in Figure A.2.

The two techniques produced similar results for many of the postures,

although there are several where they differ. In particular, the letter “O”

performs badly with the “default” calibration, a posture that is particularly
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Video default calib this calib Video default calib this calib

A N

B O

C P

D Q

E R

F S

G T

H U

I V

K W

L X

M Y

Figure A.2: Rendering of the hand using the “default” calibration (provided
with the CyberGlove) and the calibration presented in this section, for the
static fingerspelling alphabet of American Sign Language. The letters that
require movement (J and Z) are not shown.
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important for grasping. Some postures, for example, “R” appear bad using

both methods - this is a limitation of the glove capabilities (because only

relative abduction/adduction between the fingers is measured, rather than

absolute abduction of each finger).

This algorithm has been implemented and used successfully in the mea-

surements throughout the thesis. It should be noted that this technique is

strongly dependent on the starting point, and as a result, the solutions found

may be local rather than global minima.



Appendix B

Derivation of the grasp

Jacobian

Nomenclature

R Rotation (3× 3).

p Translation (3× 1).

ḡ Rigid motion (4× 4).

ξ Twist (6× 1).

ν Translational part of twist.

ω Axis of rotation (3× 1).

q A point on axis of rotation.

Jf Finger Jacobian.

Fci Force on object from contact i.

fci Force applied by finger i.

Bci Soft finger constraint.

µ Coefficient of friction.

γ Coefficient of torsional friction.

FCci Friction cone of finger i.

ẋc Velocities at the contacts.

V b Body velocity.

Adg Adjoint transformation.

Jh Hand Jacobian.

τ Joint torques.

Fo Force applied to the object.

Roci
Contact i to object rotation.

poci
Contact i to object translation.

Gi Contact map for finger i.

G Grasp map.

Gh Grasp Jacobian.

θ Joint angles of the finger.

ẋo Object velocity.

ωo Object angular velocity.

Fo Force applied on the object.

τo Torque applied on the object.

137
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Introduction

A brief mathematical background of the relevant concepts is presented, while

a more thorough exposition of part of the material presented here can be

found in Murray et al. (1994). Here we have integrated analysis referring to

different aspects of the grasping and manipulation derived from several earlier

publications (Mason & Salisbury, 1985; Zatsiorsky, 2002). The derivation of

the grasp Jacobian, which is the transformation from finger joint velocities

to the velocity of the object is described.

Representation of rigid motions

Rigid motions of a body can be expressed by a homogeneous matrix:

ḡ =

[
R p

0 1

]
(B.1)

where R is a 3× 3 matrix representing the rotation, and p is a 3× 1 vector

representing translation.

This motion can be compactly represented as a 6-dimensional twist ξ =

(ν, ω). For a pure rotation, this is given by

ξ =

[
−ω × q

ω

]
(B.2)

where ω is the axis of rotation, q is a point on that axis, and θ is the magnitude

of the twist, and for a pure translation by

ξ =

[
ν

0

]
θ (B.3)

The twist is related to the homogeneous transformation g by

ḡ = eξ̂θ (B.4)
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where

ξ̂ =

[
ω̂ ν

0 0

]
(B.5)

Finger Jacobian

For each finger, the finger Jacobian Jf maps joint velocities θ̇ into the spatial

velocity Vf of the finger tip:

Vf = Jf (θ)θ̇ (B.6)

It is given by

Jf (θ) =
[
ξ1 ξ′2 · · · ξ′n

]
(B.7)

where ξ1 represents the transformation from the first joint to the base coor-

dinate frame, and ξ′i is the combined transformation from the ith joint to the

base coordinate frame.

Example of the Finger Jacobian for the index finger To calculate

the Jacobian, we need to know the joint twists as a function of the joint

angles. This is based on the model of the hand shown in Figure A.1. The

first joint (abduction) is a rotation about the y axis, so ω1 =
[
0 1 0

]′
. A

point on the axis is given by q1 =
[
l1 0 −l5

]′
The movement of the metacarpophalangeal joint (MPJ), whose axis passes

through the same point as the first joint, is a rotation about the z axis. It

must be first rotated into the base frame. i.e.

ω′
2 = Ry(θABD)

0

0

1

 =

sin θABD

0

cos θABD

 (B.8)

where θABD is the rotation of the abduction joint, and Ry(θ) is a rotation

about the y axis of magnitude θ.

The movement of the third and fourth joints, the proximal interphalangeal
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joint (PIJ) and the distal interphalangeal joint (DIJ) are also rotations about

the z axis, and hence are in the same direction as the MPJ axis in base

coordinates (i.e., ω′
4 = ω′

3 = ω′
2). The points on the axis (q′3 and q′4) can be

computed by combining the transformations:

q′3 = q1 + Ry(θABD)Rz(θMPJ)

l2

0

0

 =

 cos θABD cos θMPJ l2 + l1

sin θMPJ l2

− sin θABD cos θMPJ l2 − l5



q′4 = q′3 + Ry(θABD)Rz(θMPJ)Rz(θPIJ)

l3

0

0



= q′3 +

 (cos θABD cos θMPJ cos θPIJ − cos θABD sin θMPJ sin θPIJ)l3

sin θMPJ cos θPIJ + cos θMPJ sin θPIJ l3

(− sin θABD cos θMPJ cos θPIJ + sin θABD sin θMPJ sin θPIJ)l3


(B.9)

where θMPJ is the rotation of the metacarpophalangeal joint, θDIJ the rota-

tion of the distal interphalangeal joint, and θPIJ the rotation of the proximal

interphalangeal joint.

The Jacobian can then be constructed and expressed as:

Jf =

[
−ω1 × q1 −ω′

2 × q′2 −ω′
3 × q′3 −ω′

4 × q′4

ω1 ω′
2 ω′

3 ω′
4

]
(B.10)

Grasping contact model

A contact model specifies the directions and orientations of forces that can

be applied by a finger on an object, and the constraints on these forces

due to friction. The constraints determine how much force can be applied

before the finger will slip. As the fingertip and the object are not rigidly

connected, it is not possible for the fingers to apply arbitrary forces and

moments on an object. The model used here is known as the soft-finger

model (Mason & Salisbury, 1985). The finger can apply forces in three

directions, as well as torque about the axis of the finger. The forces applied



141

are subject to friction constraints. The contact model is represented by a

matrix Bci
, which transforms the fingertip forces to the forces applied to the

object, and a friction cone, which describes the constraints on forces dictated

by friction. Hence the forces Fci
felt by the object due to the applied finger

forces fci
under soft-finger constraint Bci

(with a friction cone FCci
) will be

Fci
= Bci

fci
, fci

∈ FCci
(B.11)

where

Bci
=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


(B.12)

and the friction cone FCci
is given by√

f 2
1 + f 2

2 ≤ µf3, f3 ≥ 0, |f4| ≤ γ (B.13)

where µ is the coefficient of static friction and γ is the coefficient of torsional

friction. The friction cone requires that the normal force (f3) be positive, and

that the magnitude of the other translational forces be less than the normal

force multiplied by the coefficient of friction, otherwise the finger would slip.

The friction constraints also require that the moment applied about the z

axis be smaller than the coefficient of torsional friction multiplied by the

normal force, in order to avoid slipping.

Hand Jacobian

The fingers can only apply forces and velocities on the object in certain

directions, due to the contact constraints. A coordinate system can be defined

at the contacts of the object and the fingers, parallel to the directions along

which the force can be applied. There will be 4 dimensions for each finger

(translation in three directions, and rotation about the z axis). The hand
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Jacobian Jh is then defined as expressing the relationship between the vector

of 21 joint velocities θ̇ of the hand, and the vector of 20 velocities in the

contact coordinate system ẋc:

Jh(θ, x0)θ̇ = ẋc (B.14)

This is derived by requiring that at each contact, the motion is constrained

by the contact model described in the previous section:

BT
ci
V b

fici
= 0 (B.15)

where V b
fici

is the fingertip velocity in the contact frame. This velocity can

be expressed in terms of the velocity of the ith fingertip (V b
pfi

) and contact

frame (V b
pci

) relative to the finger base frame, using adjoint transformations

Adg =

[
R p̂R

0 R

]
, Ad−1

g =

[
RT −RT p̂

0 RT

]
(B.16)

which transform the velocity between coordinate systems. The contact frame

is assumed to be fixed relative to the object frame and therefore the fingertip

velocity in the contact frame consists of the object velocity ẋo transformed

into the contact frame by Ad−1
goci

added to the fingertip velocity in the base

frame Vsifi
transformed to the object frame by −Ad−1

gpci
Adgpfi

:

V b
fici

= −Ad−1
gpci

Adgpfi
V b

sifi
+ Ad−1

goci
ẋo (B.17)

This can then be substituted into the constraint equation (B.15) to give

BT
ci

(
−Ad−1

gpci
Adgpfi

V b
sifi

+ Ad−1
goci

ẋo

)
= 0

⇒ BT
ci
Ad−1

gsici
Js

sifi
θ̇fi

= GT
i ẋo = ẋci

(B.18)
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This is the equation for the ith finger. The hand Jacobian is composed by

stacking the Jacobians for each finger together:

Jh(θ, x0) =


BT

c1
Ad−1

gs1c1
Js

s1f1
(θf1) 0 0

0
. . . 0

0 0 BT
ck

Ad−1
gskck

Js
skfk

(θfk)

 (B.19)

Note that the contact forces fc can be related to the joint torques τ using

the transpose of the hand Jacobian:

τ = JT
h fc (B.20)

Grasp Map

The grasp map determines the effect of the contact forces on the object. The

contact forces need to be transformed to the coordinate system of the object.

For contact i, the force applied to the object Foi
will be the contact forces

transformed into the frame of reference of the object:

Foi
=

[
Roci

0

p̂oci
Roci

Roci

]
Bcifci = Gifci, fci

∈ FCci
(B.21)

where Roci
is the rotation and p̂oci

the translation from the object coordinates

to the contact coordinates of finger i. Gi is known as the contact map, and

maps the contact forces to object wrenches. If there are multiple fingers

grasping an object, the total wrench (the generalized force, consisting of a

linear and angular component) on the object will be the sum of the object
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wrenches from each finger:

Fo =

[[
Roc1 0

p̂oc1Roc1 Roc1

]
Bc1 · · ·

[
Rock

0

p̂ock
Rock

Rock

]
Bck

]
fc1
...

fck

 (B.22)

=
[
G1 · · · Gk

]
fc1
...

fck

 = Gfc (B.23)

where G is known as the grasp map, defined as

G =
[
G1 · · · Gk

]
=

[[
Roc1 0

p̂oc1Roc1 Roc1

]
Bc1 · · ·

[
Rock

0

p̂ock
Rock

Rock

]
Bck

]
(B.24)

Grasp Jacobian

The grasp Jacobian Gh maps the joint velocities θ̇ to the velocity of the

object ẋo:

ẋo = Ghθ̇ (B.25)

It is defined as:

Gh = G+T Jh (B.26)

where G+T is the transpose of the generalized inverse of the grasp map. The

grasp Jacobian for a multiple fingered grasp is analogous to the manipulator

Jacobian for a single finger.

Velocity and Force Ellipsoids

The grasping hand may be considered as a mechanical transformer, that

transforms joint velocities and torques from the fingers to velocities and forces

in task space (Chiu, 1988). To determine the properties of this transforma-

tion, the magnitude of the joint velocity vector (i.e. its Euclidean norm) is

fixed to be 1:

θ̇T θ̇ = 1 (B.27)
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Using the grasp Jacobian (B.25), θ̇T and θ̇ can be written as

θ̇ = G−1
h ẋo

θ̇T = ẋT
o (GT

h )−1

Substituting these into Equation (B.27) gives

θ̇T θ̇ = ẋT
o (GT

h )−1G−1
h ẋo = ẋT

o (GhG
T
h )−1ẋo = 1 (B.28)

The values of ẋo that satisfy this relationship are the possible object velocities

that can be produced when the norm of the joint velocity vector is 1. These

values can be visualized by an ellipsoid. The translational velocity ellipsoid

is defined by

ẋT
o (Gh(trans)G

T
h(trans))

−1ẋo ≤ 1 (B.29)

where Gh(trans) is the translational component of the grasp Jacobian (i.e.,

the first 3 rows). The translational component of the grasp map can be con-

sidered independently of the rotational component because the translational

velocity of the object is a function only of these three rows (as well as the

joint velocities). The velocity transmission ellipsoid represents the velocity

transmission ratio between the fingers’ joint velocities and the object veloc-

ity. Velocity is optimally produced along the major axis of the ellipsoid. This

means that for joint velocities with a constant norm, the maximum velocity is

produced in this direction (Zatsiorsky, 2002). Similarly, the angular velocity

ellipsoid is defined by

ωT
o (Gh(angular)G

T
h(angular))

−1ωo ≤ 1 (B.30)

where Gh(angular) is the angular component of the grasp Jacobian.

Force ellipsoids can also be defined in terms of the grasp Jacobian because

the inverse of the grasp Jacobian relates joint torques to the forces applied

by the grasp on the object. The translational and rotational force ellipsoids

are analogously defined by

F T
o (Gh(trans)G

T
h(trans))Fo ≤ 1 (B.31)
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and

τT
o (Gh(angular)G

T
h(angular))τo ≤ 1 (B.32)

respectively.
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