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DECISION MAKING

I We are constantly making decisions
I These range from very fast perceptual decisions (e.g. is the

light red?) to more complicated decisions (should I wake
up at 4am to give a talk via zoom)

I In this talk, the focus is on fast perceptual decisions
(< 1500 ms)
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DECISION MAKING

I Decision making is a widely studied topic because it gives
us a way of studying many cognitive processes

I All decisions, even those which seem extremely simple, are
the result of a process

I Modelling the temporal dynamics of these processes can
help us understand how the brain processes different types
of information
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Stimulus Response

RT, accuracy
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RESPONSE TIMES (RT)

I Response times (RT) are a popular technique for studying
cognitive processes.

I Mean response times can tell us whether one process is
faster than another

I However, only using mean RT can mask important details,
that we could learn by looking at the distributions of RT
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RT MODELS

I Considering only mean RT can mask important details
I By looking at the whole distribution, we can observe in

more detail differences across conditions, such as how fast
and slow responses change
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RT MODELS - WIENER DIFFUSION MODEL

I The Wiener diffusion model is a process model to explain
reaction times

I It is based on the notion that evidence is accumulated in a
noisy way (a random walk) until a bound is reached, at
which point a decision is made

Figure 2. Sequential-sampling models for two-choice decisions. (a) Taxonomy of the main model classes. The models assume that decisions are made by integrating noisy
stimulus information over time until a criterion amount of evidence needed for a response is obtained. In randomwalks, evidence is accumulated as a single total. Evidence

for a right response (‘R’) increases the total; evidence for a left response (‘L’) decreases it. A response is made when the evidence for one response exceeds the evidence for
the other by a criterion amount (a relative stopping rule). In accumulator models and counter models, evidence for the two responses is accumulated as separate totals.

The response is determined by the first total to reach a criterion (an absolute stopping rule). Models are classified according to whether evidence accumulates continuously
or at discrete time points, and whether the increments to the evidence totals are of variable size (continuously distributed) or occur in discrete units (e.g. counts). Random

walks in continuous time are diffusion processes. (b) Diffusion model. The sample paths represent moment-by-moment fluctuations in the evidence favoring right and left
responses. The process starts at z and accumulates evidence until it reaches one of two criteria, 0 and a. If the upper criterion is reached first, a ‘right’ response is made; if

the lower is reached first, a ‘left’ response is made. The moment-by-moment fluctuations in the sample paths reflect noise in the decision process. The mean rate of
accumulation varies randomly from trial to trial because of variability in the quality of the stimulus information. This variability allows the model to predict errors that are

slower than correct responses. Other behaviorally important sources of variability are the location of the starting point of the accumulation process and the duration of the
nondecision component of times for stimulus encoding and response execution (RT). The first of these sources of variability allows the model to predict errors that are
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ACCUMULATOR MODELS

Figure 2. Sequential-sampling models for two-choice decisions. (a) Taxonomy of the main model classes. The models assume that decisions are made by integrating noisy
stimulus information over time until a criterion amount of evidence needed for a response is obtained. In randomwalks, evidence is accumulated as a single total. Evidence

for a right response (‘R’) increases the total; evidence for a left response (‘L’) decreases it. A response is made when the evidence for one response exceeds the evidence for
the other by a criterion amount (a relative stopping rule). In accumulator models and counter models, evidence for the two responses is accumulated as separate totals.

The response is determined by the first total to reach a criterion (an absolute stopping rule). Models are classified according to whether evidence accumulates continuously
or at discrete time points, and whether the increments to the evidence totals are of variable size (continuously distributed) or occur in discrete units (e.g. counts). Random

walks in continuous time are diffusion processes. (b) Diffusion model. The sample paths represent moment-by-moment fluctuations in the evidence favoring right and left
responses. The process starts at z and accumulates evidence until it reaches one of two criteria, 0 and a. If the upper criterion is reached first, a ‘right’ response is made; if

the lower is reached first, a ‘left’ response is made. The moment-by-moment fluctuations in the sample paths reflect noise in the decision process. The mean rate of
accumulation varies randomly from trial to trial because of variability in the quality of the stimulus information. This variability allows the model to predict errors that are

slower than correct responses. Other behaviorally important sources of variability are the location of the starting point of the accumulation process and the duration of the
nondecision component of times for stimulus encoding and response execution (RT). The first of these sources of variability allows the model to predict errors that are
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I The parameters of these models then can then be
interpreted in a psychologically meaningful way, e.g.
I “drift rate” - indicates the speed at which information

accumulates, quantifying perceptual sensitivity
I “threshold” -indicates the conservatism of the subjects in

making a decision
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MODEL

Stimulus Response

RT, accuracy
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LIMITATIONS OF RT ANALYSIS

A model-based approach to RTs can provide us more insight
than just using mean RTs. However, there are three significant
drawbacks with using RTs to study the temporal dynamics of
cognitive processes:
I The RT measures the end of the process, so the temporal

dynamics are necessarily inferred
I If the decision is a multi-stage process, it is not possible to

segment the reaction times into the contributions from the
two or more processes

I There may be a mix of two (or more) different classes of
trials. A single trial cannot be classified as belonging to
one type or the other using only the RT.
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ARM MOVEMENTS

I Arm movements are the “work-horse” of the field of motor
control

I This is because arm movements are easy to work with, but
still face many issues involved in planning and executing
movement (e.g. dealing with redundancy)

I Much of our knowledge about planning and executing
movements comes from arm movement studies
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ARM MOVEMENTS

I Arm pointing movements are useful because:
I They are natural responses
I They can be initiated quickly
I They take long enough that you can change your mind

during the movement
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FEATURES OF ARM MOVEMENTS
I Point-to-point arm movements have been studied

extensively in the motor control literature
I These movements are highly stereotypical
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I We can use this property of trajectories to see when there
are multiple processes occurring

I When the trajectory does not look like the stereotypical
one, we deduce that something else is occurring rather
than a single decision
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE

I In this task, subjects had to decide whether the stimulus
was a person or an animal.
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE

I Subjects pointed to a target corresponding to the stimulus
(A for animal, P for person)
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE

I There were two types of primes:
I Novel primes - the primes was never a target
I Repeated primes - the prime was also a target
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MASKED CONGRUENCE PRIMING

I In these tasks, although the primes are not consciously
observed, they affect behaviour.

I They will facilitate the movement if the prime is
congruent, and cause subjects to move the wrong way
initially sometimes when incongruent

I This study asked whether repeated primes (which could
have a prepared stimulus-response action prepared) are
different from novel primes, which are never consciously
seen so may not have this representation
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE

intent, it provides an earlier window into the decision making
process than the path offset measure. Cumulative submovement
amplitude is a measure of how far the subject is planning on going
towards (or away from) the target. Figure 6 shows the differences
in mean (across subjects) cumulative submovement amplitudes
between the congruent and incongruent trials. As observed in the
path offset analysis, the repeated trials showed an earlier and
larger MCE than the novel trials. For the repeated prime stimuli,
this difference was significantly greater than zero (using a t-test
with 0.05 significance) between 120 ms and 340 ms, while for the
novel prime stimuli, this was between 160 ms and 320 ms.
The test of prime visibility (see Methods for details) revealed that

the masking procedure was effective in preventing visual
awareness of the prime stimuli. The mean hit rate was 47% and
the mean false alarm rate was 49.5%, which yielded a d’ of 20.04.
A one-sample t-test indicated that this d’ score was not different
from zero (t(15) =20.8, p=0.43). A further analysis was used to
assess prime visibility for repeated primes and novel primes
independently. This analysis revealed d’ scores of 20.07 and
20.009 for repeated and novel primes respectively; neither score
was different from zero (both t-values ,1).

Experiment 2: Letter/Number Categorization
The results of Experiment 1 revealed a clear difference between

repeated and novel primes, with repeated primes producing an
earlier and larger MCE than novel primes. Because the frequency
of occurrence for each prime type was held constant, and because
we counterbalanced the assignment of prime stimuli to each prime
type across subjects, the only difference between the two was that
repeated primes were available for conscious evaluation and novel
primes were not. If one wanted to maintain that our experimental
conditions led to a central source of priming (which the MCE for
novel primes suggests), thereby excluding a peripheral source, then
one would need to argue that the earlier and larger priming effect
for the repeated primes was due to a consciously induced
modulation of the central representations for the repeated stimuli.
In Experiment 2 we tested this possibility against the alternative
possibility that conscious evaluation of stimuli leads subjects to
establish peripheral stimulus-response associations and that these
SR mappings were responsible for the earlier MCE.

In Experiment 2 subjects categorized strings of letters or
numbers by reaching out and touching ‘‘ABC’’ on one side of the
computer monitor or ‘‘123’’ on the other side. We used this task
because the processing of letters and digits proceeds through well-
established and clearly delineated stages. Initially, for example,
letters are processed as non-letter-specific shapes in both
hemispheres, followed by the retrieval of letter-specific represen-
tations in the left hemisphere [48–50]. Letter-specific representa-
tions are commonly referred to as abstract letter identities, or
ALIs, because they serve to mediate between highly variable
inputs (consider the variability in handwritten text) and lexical
orthographic representations stored in long-term memory. Impor-
tantly for our purposes here, there is a long line of evidence, both
from studies of neuropsychological patients and unimpaired
individuals, that ALIs are obligatorily accessed independently of
a letter-string’s physical properties, such as its shape, size or
location [51].
To isolate peripheral and central sources of the MCE, we

compared priming for stimuli like ‘‘EhT’’ versus ‘‘eHt’’. Both
stimuli map onto the same abstract letter identities, but we ensured
that only one of the two physical forms appeared consciously as a
target during the course of the experiment. The target stimulus in
this pair also served as the repeated prime. The other stimulus in
this pair, which we refer to as the ‘‘repeated/novel’’ prime, is both
‘‘repeated’’ (it is identical to its pair at the level of abstract letter
identities) and ‘‘novel’’ (its physical form never appears conscious-
ly). Critically, if the distinctive MCE for repeated primes in
Experiment 1 was due to an exclusive modulation of central
representations, then repeated and repeated/novel primes should
produce the same pattern priming in the present experiment by
virtue of sharing identical abstract letter identities. If, though, the
distinctive MCE for repeated primes in Experiment 1 was due to a
learned association between a particular physical form and its
appropriate response, then the MCE for repeated primes in this
experiment should be distinct from the MCE for novel and
repeated/novel primes.
Except for the obvious change in the task and the use of three

prime types (repeated, novel and repeated/novel), the two
experiments were identical. Just as before, we calculated the
‘grand means’ between 300 and 550 ms after target onset (see

Figure 4. Sample data from one subject in Experiment 1. Panel A depicts reaching trajectories in the congruent condition; Panel B depicts
reaching trajectories in the incongruent condition.
doi:10.1371/journal.pone.0017095.g004

Flexibility of Nonconscious Processes

PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e17095

I Subjects were required to begin moving before 350 ms.
I In the congruent conditions (A), most of the movements

were straight to the correct target
I In the incongruent condition (B), the subjects more often

move initially in the wrong direction.
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MASKED CONGRUENCE PRIMING
FINKBEINER & FRIEDMAN (2011), PLOS ONE

I By looking at the path offset (distance from a straight line
path), we can observe differences between the two types of
primes

I Specifically, the repeated primes caused the trajectories to
deviate more than the novel primes

I Additionally, we can observe that the repeated primes
have an earlier effect than the novel primes
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POINTING TO HYBRID FACES

I We can apply a spatial filter to images to extract the low
spatial frequency component, and the high spatial
frequency component

I It is believed that these two components are processed
differently
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POINTING TO HYBRID FACES
AWASTHI, FRIEDMAN & WILLIAMS (2011), NEUROPSYCHOLOGIA
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I In this task, subjects had to decide whether a hybrid face,
consisting of a superimposed high spatial frequency (HSF)
and low spatial frequency face (LSF) was male or female

I The HSF face was salient
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POINTING TO HYBRID FACES
AWASTHI, FRIEDMAN & WILLIAMS (2011), NEUROPSYCHOLOGIA
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I Subjects had to point to the either the male or female face
(counterbalanced across subjects)

I Subjects were forced to begin moving within 350 ms, but
had plenty of time to complete the movement

I We recorded the movement of the fingertip using a motion
capture system
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POINTING TO HYBRID FACES
AWASTHI, FRIEDMAN & WILLIAMS (2011), NEUROPSYCHOLOGIA

(a)

(b)

Figure 3 (a) Experiment 3: Mean time-normalized reaching trajectories for peripheral conditions, for a target appearing on the right.  
(b) Graph showing mean values of the maximum curvature plotted against stimuli conditions. Error bars indicate standard values from the mean and the 
asterisks (*) denote significant effect. Incongruent trials show significantly larger curvature than congruent trials. Trajectories are more curved in peripheral 
conditions than in foveal conditions. 
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I For incongruent targets (e.g. female LSF superimposed on
a male HSF), trajectories were more curved.

I When the LSF component of the wrong target was the
same sex as the target, the trajectories were also curved.

I These effects were additive
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POINTING TO HYBRID FACES
AWASTHI, FRIEDMAN & WILLIAMS (2011), NEUROPSYCHOLOGIA

(a)

(b)

Figure 3 (a) Experiment 3: Mean time-normalized reaching trajectories for peripheral conditions, for a target appearing on the right.  
(b) Graph showing mean values of the maximum curvature plotted against stimuli conditions. Error bars indicate standard values from the mean and the 
asterisks (*) denote significant effect. Incongruent trials show significantly larger curvature than congruent trials. Trajectories are more curved in peripheral 
conditions than in foveal conditions. 
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I Although the HSF face was more salient, subjects initially
reached towards the LSF face.

I We can conclude from this that the LSF components are
likely processed earlier than HSF for this task.
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MUSCLES AND THE BRAIN

I Our movements are generated by our muscles
I Our muscles are controlled by the central nervous systemthe novel resistive loads applied at the elbow. These

altered LLRs correlated with reaching  errors during
learning , showing  that subjects who adapted more to
the novel load (i.e., had smaller reach errors) displayed
g reater modulation of their LLRs in perturbation trials.
These results hig hlig ht an important link between the
adaptation of feedforward and feedback control, and
sug g est a key part of motor adaptation is to adjust feed-
back responses when the physical properties of the limb
or environment are altered. In addition, LLRs compen-
sate for novel loads when a perturbation is applied before
movement, sug g esting  the adapted control policy is en-
g ag ed while preparing  a voluntary action [49 ]. Finally,
both voluntary actions and corrective responses are
adapted when the streng th of the force field is consistent
across trials. In contrast, exposure to variable force fields
appears to only modify corrective responses [50 ], indicat-
ing  the adaptation of voluntary actions and feedback
responses may be partly dissociated in some circum-
stances.

A key challeng e with feedback control is dealing  with
sensory and motor delays. Recent work illustrates that
forward models mig ht help remove this delay [51 !].
Further, this study demonstrated that state estimation
processes were altered on a trial-by-trial basis. These
rapid trial-by-trial updates in state estimation are broadly
consistent with two-timescale models of motor learning
[52] and the recent sug g estion that fast learning  is associ-
ated with forward models (i.e., state estimation) whereas
slow learning  is related to inverse models (i.e., feedback
g ains [53]).

Corrective responses to visual cursor shifts also update
during  force and kinematic adaptation [54–56]. Visuomo-
tor corrective responses are modulated by the direction
and structure of visual rotations [56], and selectively
account for the relevance of cursor-jump perturbations
[54]. Remarkably, corrective responses can be learned
independently based on the relevance of visual perturba-
tions towards the left or rig ht side of the workspace. For
example, subjects can learn to make vig orous corrective
responses when visual perturbations persist until the end
of movement on the left side of their workspace, but learn
to disreg ard transient perturbations on the rig ht side of
their workspace [54]. These flexible visuomotor
responses hig hlig ht the specificity of how the motor
system evaluates and responds to sensory feedback dur-
ing  ong oing  actions. Collectively, the adaptation of cor-
rective responses hig hlig hted in recent studies establishes
they play an important role in the basic mechanisms of
g enerating  skilled actions.

Neural implementation of feedback control
The voluntary motor system is hierarchically org anized,
and corresponding ly, corrective responses reflect contri-
butions from many levels of this hierarchy (Fig ure 2). It

has been assumed that co-contraction of antag onist mus-
cles plays an important role in minimizing  the effect of
disturbances. However, estimates for muscle stiffness
commonly used in the field are almost an order of mag ni-
tude too hig h, as they include contributions from neural
feedback processes [28!]. The main benefit of co-con-
traction may be to increase the amplitude of spinal stretch
responses (i.e., short latency) that scale with the level of
muscle activity, althoug h the link between co-contraction
and spinal feedback g ains may be altered in some situa-
tions [26].

Spinal feedback
There is considerable debate reg arding  the relative con-
tribution of spinal versus supraspinal feedback during
voluntary motor tasks, with some concluding  spinal feed-
back plays a dominant role [57] and others a minimal role
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Current Opinion in Neurobiology

Neural basis of feedback processing during voluntary motor actions.
Spinal feedback provides a fast default response for somatosensory
feedback. However, goal-directed corrective responses probably
involve cortical and subcortical circuits already ascribed to feed-
forward planning and initiating motor actions (M1, primary motor
cortex; S1, primary somatosensory cortex; PMd, dorsal premotor
cortex; PMv, ventral premotor cortex, SMA, supplementary motor
area; 5, parietal area 5; 7, parietal area 7; V1, primary visual cortex;
BG, basal ganglia; C, cerebellum).
Adapted from [99].

Current Opinion in Neurobiology 2015, 33:85–94 www.sciencedirect.com
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MUSCLES AND THE BRAIN

I Our movements are dependent on feedback
I Without feedback, it is very difficult to move!
I e.g. Ian Waterman, the man who lost his body

https://youtu.be/FKxyJfE831Q?t=180
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MUSCLES AND THE BRAIN

I The problem with using feedback is that it is slow!
I Depending on the modality, the feedback loop is in the

order of 100-200 ms
I There are also delays in the response of the limbs, as

muscles take time to develop force and act like low pass
filters

I So how do we deal with the need for feedback, when
feedback is so slow?
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INTERMITTENT CONTROL

I One possible solution is the use of intermittent control
I Rather than continuously controlling movement, motor

commands are given at discrete times
I This simplifies movement planning, and makes the system

more stable given slow feedback
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SUBMOVEMENTS

I We assume that the observed arm movements are made up
of submovements - discrete, stereotypical movements that
are serially concatenated and overlapping in time

I Submovements are assumed to be straight.
I The resultant movement may be curved due to the

superposition of multiple submovements (starting at
different times)

I They are discrete rather than continuous at the planning
stage, and planned in a feed-forward manner.

I This means that all the properties of a submovement are
proscribed at the start of the movement (e.g. amplitude,
direction, timing)
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SUBMOVEMENT DECOMPOSITION - EXAMPLE
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I This method gives the onset times T0 and amplitudes
Dx,Dy of the submovements, which are a compact
description of intent at a specific time.
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MODEL
Stimulus

Continuous Response

Decision

Submovement 1 Submovement 2
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TACTILE SIMON TASK
SALZER & FRIEDMAN, IN PRESS
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CUMULATIVE SUBMOVEMENT AMPLITUDE

I We use cumulative submovement amplitude (e.g.
Finkbeiner & Friedman, 2011) as a proxy for the decision
making process

I We look only at the left-right planned amplitudes of the
submovements
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CUMULATIVE SUBMOVEMENT AMPLITUDE
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I The cumulative submovement amplitude is a measure of
intent - when it is 1 or -1, the subject has made a decision.

I When it is between -1 and 1, the subject has not yet made a
final choice, but the value reflects the decision making
process and biases
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RESULTS - TRAJECTORIES
Congruent and incongruent movements show different
trajectories, as do visual and tactile
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RESULTS
Incongruent movements do not just show inhibition but
activation of the “wrong” target
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RESULTS - CUMULATIVE SUBMOVEMENT AMPLITUDE
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I Cumulative submovement amplitude shows the temporal
dynamics of the decision process

I Visual decisions start and resolve earlier
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RESULTS - CONGRUENCE EFFECTS

I The interference effect of both stimuli start at a similar time
I While the duration of the interference is similar for the two

modalities, the tactile stimuli shows a much slower decay
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[Congruence effect = incongruent - congruent (cumulative
submovement amplitude)]
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RESULTS - DECOMPOSITION OF CSA
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(d) Somatosensory - DMC model
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(c) Visual - DMC model
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(e) Visual - AI model
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(h) Somatosensory - Automatic activation decomposed
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(g) Visual - Automatic acitvation decomposed

I We assume that
I congruent = controlled + automatic
I incongruent = controlled - automatic

I Then:
I controlled = (congruent + incongruent) / 2
I automatic = (congruent - incongruent) / 2
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RESULTS - DECOMPOSITION OF CSA
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(c) Visual - DMC model
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(e) Visual - AI model
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(h) Somatosensory - Automatic activation decomposed
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(g) Visual - Automatic acitvation decomposed

I We can also test whether selective suppression of
activation is a good account (e.g. Ridderinkof 2002)
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RESULTS - DECOMPOSITION OF CSA
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(c) Visual - DMC model
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(e) Visual - AI model
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(g) Visual - Automatic acitvation decomposed

I In this model, we assume there is an automatic activation,
followed by delayed inhibition of this same process

I The main difference between visual and somatosensory
Simon tasks is the much longer inhibition duration

I This technique gives us a way to look at the very early
stages of the decision making process
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RESULTS - EFFECT OF PREVIOUS TRIAL
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I We can also examine the effect of the previous trial on the
congruence effect

I When the previous trial was congruent, there is a stronger
congruence effect
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MODEL-BASED ANALYSIS USING ARM MOVEMENTS
FRIEDMAN ET AL., 2013

I Subjects were required to point with the index finger to a
target on a touch-screen in the direction of motion of a set
of dots (random dot kinetogram), with variable coherence
(3%, 6%, 12%, 24%, 48%)
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EXPERIMENTAL SETUP

I The stimuli was shown for 300 ms
I The subjects were required to begin moving within 350 ms

of stimulus onset (i.e. before they had made a final
decision)

I The trajectory of the fingertip was recorded with an
Optotrak motion capture system at 200 Hz.
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ACCUMULATOR MODEL ANALYSIS

I We assume that there are two accumulator processes
governing the movement

I The first is the decision process, which we model using a
Wiener diffusion process

I Whichever bound is reached is the final decision

Figure 2. Sequential-sampling models for two-choice decisions. (a) Taxonomy of the main model classes. The models assume that decisions are made by integrating noisy
stimulus information over time until a criterion amount of evidence needed for a response is obtained. In randomwalks, evidence is accumulated as a single total. Evidence

for a right response (‘R’) increases the total; evidence for a left response (‘L’) decreases it. A response is made when the evidence for one response exceeds the evidence for
the other by a criterion amount (a relative stopping rule). In accumulator models and counter models, evidence for the two responses is accumulated as separate totals.

The response is determined by the first total to reach a criterion (an absolute stopping rule). Models are classified according to whether evidence accumulates continuously
or at discrete time points, and whether the increments to the evidence totals are of variable size (continuously distributed) or occur in discrete units (e.g. counts). Random

walks in continuous time are diffusion processes. (b) Diffusion model. The sample paths represent moment-by-moment fluctuations in the evidence favoring right and left
responses. The process starts at z and accumulates evidence until it reaches one of two criteria, 0 and a. If the upper criterion is reached first, a ‘right’ response is made; if

the lower is reached first, a ‘left’ response is made. The moment-by-moment fluctuations in the sample paths reflect noise in the decision process. The mean rate of
accumulation varies randomly from trial to trial because of variability in the quality of the stimulus information. This variability allows the model to predict errors that are

slower than correct responses. Other behaviorally important sources of variability are the location of the starting point of the accumulation process and the duration of the
nondecision component of times for stimulus encoding and response execution (RT). The first of these sources of variability allows the model to predict errors that are
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ACCUMULATOR MODEL ANALYSIS
I The second process is the “movement initiation” process
I This ensures that the subjects start before 350 ms
I We model this as a one sided accumulator (when it hits the

bound, make a movement)
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ACCUMULATOR MODEL ANALYSIS

I We have a competition between the decision process and
the movement initiation process

I If the decision process finishes before the movement
initiation process, the subject will make a single
submovement directly to the target
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ACCUMULATOR MODEL ANALYSIS

I The likelihood of this is given by:

L = P(x1 = a1,T = t0; z1, v1, a1,Ter1, s)
× (1− P(x2 = a2,T ≤ t0; v2, a2,Ter2, s))

x=amount of accumulation, a = bound, t0=onset of first
submovement, v = drift rate, z1 = starting point of diffusion
process (bias), Ter = non-decision time, s = standard deviation
I P(x1 = a1,T = t0) is the PDF of the Wiener first passage

time
I P(x2 = a2,T < t0) is the CDF of the Wald distribution
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ACCUMULATOR MODEL ANALYSIS

I If the movement initiation process finishes first, then make
a submovement part of the way to the target

I When the first submovement is approximately half
finished, make another submovement

I If in the meantime, the decision process has reached a
bound, make the second submovement directly to the
target.
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ACCUMULATOR MODEL ANALYSIS

I The angle to use is linearly related to the amount of
evidence accumulated

I The likelihood of this is given by:

L =Pnt(x1 =
θ1 − θl

θr − θl
,T = t0; z1, v1, a1,Ter1, s)

× P(x2 = a2,T = t0; v2, a2,Ter2, s))
× P(x1 = 0, t0 < T < t1; z1, v1, a1,Ter1, s)

x=amount of accumulation, a = bound, t0=onset of first
submovement, t1=onset of second submovement, v = drift rate,
z1 = starting point of diffusion process (bias), Ter = non-decision
time, s = standard deviation
I Pnt(x, t) is the PDF of the non-terminated Wiener process
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ACCUMULATOR MODEL ANALYSIS

I We then use maximum likelihood estimation to find the
parameters

lnL(Ter1, a1,V11, . . . , v15, z1,Ter2, a2, v2|x1, . . . , xn)

=

N∑
i=1

ln f (xi|Ter1, a1,V11, . . . , v15, z1,Ter2, a2, v2|x1, . . . , xn)

I For the decision process, we assume that only the drift rate
varies across conditions (coherence levels)

I For the movement initiation process, we assume the same
parameters for all conditions

I We use simplex (fminsearch in matlab), followed by
simulated annealing to find the best model parameters
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ACCUMULATOR MODEL ANALYSIS

I To check the fit, we use the parameters to generate
movements

I We fit the model only using submovement onset time (t0)
and angle, so we can simulate the accumulators to find
these values

I However, for the rest of the values we need to make some
assumptions
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A MODEL OF MOVEMENT PRODUCTION

I We defined a simple model for movement production,
based on some assumptions (we fit the values from the
data for each subject):
I For one submovement trials, the onset time and amplitude

are determined.
I The duration of one submovement movements was

assumed to be normally distributed
I For two submovement trials, the amplitude was assumed

to be normally distributed
I The second submovement duration was assumed to be a

linear function of the amplitude
I The second submovement was assumed to start a certain

proportion of the way through the first submovement
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ACCURACY

I The accuracy data shows an increase of accuracy with
coherence, as expected. 2 subjects which did not show this
increase were not included in further analysis.
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MODEL PREDICTIONS
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ONSET TIMES
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TRAJECTORIES
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TRAJECTORIES
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PATH OFFSET
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RESULTS

I Using accumulator models combined with submovements,
we can predict reasonably well arm movements made
during perceptual decision making

I We can use this technique to probe further when and why
submovements are generated

I The technique can also be used to provide further
constraints for models of perceptual decision making
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DECISION MAKING INFORMING MOTOR CONTROL

I As well as using arm movements to inform us about
decision making, we can also learn about how and when
we produce of arm movements using decision making
experiments
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SUBMOVEMENT INITIATION
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I Continuous movements can be decomposed into a number
of temporally overlapping submovements

I When we make multiple submovements, when should we
produce the “next” submovements?
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SUBMOVEMENT INITIATION

I Some possible options:
I As soon as possible ( 200 ms)
I As soon as enough information is available
I Fixed proportion of the submovement duration
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I For nearly all the subjects, the second submovement is
produced at a fixed proportion of submovement duration
(around half)
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MOVEMENT BIAS
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I In the reaching experiments described before, subjects
typically show a bias for movements towards the right
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DECISION BIAS

I In a random dot kinematogram experiment, we observe a
response bias towards the right (on average)

I Are the two related?
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MOVEMENT AND DECISION BIAS
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I We find a significant correlation between initial motor bias
and the response bias
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MOVEMENT AND DECISION BIAS

I While the subjects had sufficient time to change their
mind, the initial motor bias dictated the response bias

I Motor biases and decision biases appear to be part of the
same decision process

I Motor biases should be taken into account in response
selection, e.g. when designing voting machines
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CONCLUSIONS

I Using arm movements (rather than RTs) to record
responses can provide significantly more details about
cognitive processing

I In particular, they are good for situations with multiple
processes are going on

I We have shown that additionally, arm movements can be
exploited to reveal the current state of the decision process
at times before the final decision is made, on a trial-to-trial
basis only binary decisions.

I By using detailed modeling, we can also access
information about the timing of different processes
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MODEL
Stimulus

Continuous Response

Decision

Submovement 1 Submovement 2
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CONCLUSIONS

I All movements involve decision making:
I When to start moving
I How far to move
I How fast to move
I Which path to take

I To fully understand and model the processes of motor
control, it is necessary to take into account decision
making process

I Likewise, using decision making paradigms can inform us
of how motor control takes place



Introduction Arm movements Intermittent Arm movements Decision making Conclusions

THANKS

I Matthew Finkbeiner (Macquarie University)
I Bhuvanesh Awasthi (University of Copenhagen)
I Mark Williams (Macquarie University)
I Scott Brown (University of Newcastle)
I Yael Salzer (Ben Gurion University)
I Chris Erb (University of Auckland)


	Introduction
	Why decision making?
	Why arm movements?

	Arm movements informing decision making
	Masked congruence priming
	Pointing to hybrid faces

	Intermittent control
	Arm movements informing decision making (2)
	Visual vs. tactile Simon task
	Model-based analysis of decision making

	Decision making informing arm movements
	Submovement initiation
	Movement bias leads to decision bias

	Conclusions
	Conclusions


