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MUSCLES AND THE BRAIN

I Our movements are generated by our muscles
I Our muscles are controlled by the central nervous systemthe novel resistive loads applied at the elbow. These

altered LLRs correlated with reaching  errors during
learning , showing  that subjects who adapted more to
the novel load (i.e., had smaller reach errors) displayed
g reater modulation of their LLRs in perturbation trials.
These results hig hlig ht an important link between the
adaptation of feedforward and feedback control, and
sug g est a key part of motor adaptation is to adjust feed-
back responses when the physical properties of the limb
or environment are altered. In addition, LLRs compen-
sate for novel loads when a perturbation is applied before
movement, sug g esting  the adapted control policy is en-
g ag ed while preparing  a voluntary action [49 ]. Finally,
both voluntary actions and corrective responses are
adapted when the streng th of the force field is consistent
across trials. In contrast, exposure to variable force fields
appears to only modify corrective responses [50 ], indicat-
ing  the adaptation of voluntary actions and feedback
responses may be partly dissociated in some circum-
stances.

A key challeng e with feedback control is dealing  with
sensory and motor delays. Recent work illustrates that
forward models mig ht help remove this delay [51 !].
Further, this study demonstrated that state estimation
processes were altered on a trial-by-trial basis. These
rapid trial-by-trial updates in state estimation are broadly
consistent with two-timescale models of motor learning
[52] and the recent sug g estion that fast learning  is associ-
ated with forward models (i.e., state estimation) whereas
slow learning  is related to inverse models (i.e., feedback
g ains [53]).

Corrective responses to visual cursor shifts also update
during  force and kinematic adaptation [54–56]. Visuomo-
tor corrective responses are modulated by the direction
and structure of visual rotations [56], and selectively
account for the relevance of cursor-jump perturbations
[54]. Remarkably, corrective responses can be learned
independently based on the relevance of visual perturba-
tions towards the left or rig ht side of the workspace. For
example, subjects can learn to make vig orous corrective
responses when visual perturbations persist until the end
of movement on the left side of their workspace, but learn
to disreg ard transient perturbations on the rig ht side of
their workspace [54]. These flexible visuomotor
responses hig hlig ht the specificity of how the motor
system evaluates and responds to sensory feedback dur-
ing  ong oing  actions. Collectively, the adaptation of cor-
rective responses hig hlig hted in recent studies establishes
they play an important role in the basic mechanisms of
g enerating  skilled actions.

Neural implementation of feedback control
The voluntary motor system is hierarchically org anized,
and corresponding ly, corrective responses reflect contri-
butions from many levels of this hierarchy (Fig ure 2). It

has been assumed that co-contraction of antag onist mus-
cles plays an important role in minimizing  the effect of
disturbances. However, estimates for muscle stiffness
commonly used in the field are almost an order of mag ni-
tude too hig h, as they include contributions from neural
feedback processes [28!]. The main benefit of co-con-
traction may be to increase the amplitude of spinal stretch
responses (i.e., short latency) that scale with the level of
muscle activity, althoug h the link between co-contraction
and spinal feedback g ains may be altered in some situa-
tions [26].

Spinal feedback
There is considerable debate reg arding  the relative con-
tribution of spinal versus supraspinal feedback during
voluntary motor tasks, with some concluding  spinal feed-
back plays a dominant role [57] and others a minimal role

88 Motor circuits and action
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Current Opinion in Neurobiology

Neural basis of feedback processing during voluntary motor actions.
Spinal feedback provides a fast default response for somatosensory
feedback. However, goal-directed corrective responses probably
involve cortical and subcortical circuits already ascribed to feed-
forward planning and initiating motor actions (M1, primary motor
cortex; S1, primary somatosensory cortex; PMd, dorsal premotor
cortex; PMv, ventral premotor cortex, SMA, supplementary motor
area; 5, parietal area 5; 7, parietal area 7; V1, primary visual cortex;
BG, basal ganglia; C, cerebellum).
Adapted from [99].

Current Opinion in Neurobiology 2015, 33:85–94 www.sciencedirect.com
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MUSCLES AND THE BRAIN

I Our movements are dependent on feedback
I Without feedback, it is very difficult to move!
I e.g. Ian Waterman, the man who lost his body

https://youtu.be/FKxyJfE831Q?t=180
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MUSCLES AND THE BRAIN

I The problem with using feedback is that it is slow!
I Depending on the modality, the feedback loop is in the

order of 100-200 ms
I There are also delays in the response of the limbs, as

muscles take time to develop force and act like low pass
filters

I So how do we deal with the need for feedback, when
feedback is so slow?
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INTERMITTENT CONTROL

I One possible solution is the use of intermittent control
I Rather than continuously controlling movement, motor

commands are given at discrete times
I This simplifies movement planning, and makes the system

more stable given slow feedback
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SUBMOVEMENTS

I The primitives of movement are often called
submovements - e.g. straight line movements with
bell-shaped velocity profiles

I More complex movements can be constructed by
combining multiple submovements (Flash & Henis, 1991)
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SLOW MOVEMENTS

I We have difficulty in making slow, smooth movements
I Other animals seem capable of making slow movements,

e.g. sloths
I When instructed to make slow movements, people will

often cheat if they can (van der Wel, Sternad &
Rosenbaum, 2010)

R. P. R. D. van der Wel, D. Sternad, & D. A. Rosenbaum

Burgess-Limerick, Neal, & Abernethy, 1992; Gutnik,
Nicholson, Go, Gale, & Nash, 2003). Despite these argu-
ments and violations, there are demonstrations supporting
this model, first and foremost Viviani and Terzuolo’s data on
typing. Hence, we considered it worthwhile to test the model
in simple unimanual movements to determine the boundaries
of the model’s validity for this class of movements, in which
it has not been tested before, to the best of our knowledge.

The third hypothesis we considered was one we called the
preferred frequency hypothesis. This hypothesis relied on the
idea that any moving system has a preferred frequency that is
largely determined by its resonance frequency. The preferred
frequency hypothesis states that people adjust their move-
ment patterns to move as close as possible to resonance. There
is experimental evidence that people adjust their movement
patterns to move at or near resonance (e.g., Abe & Yamada,
2003; Goodman, Riley, Mitra, & Turvey, 2000; Hatsopou-
los & Warren, 1996; Holt, Jeng, Radcliffe, & Hamill, 1995;
Raftery, Cusumano, & Sternad, 2008; Rosenbaum, Slotta,
Vaughan, & Plamondon, 1991; Rosenblum & Turvey, 1988;
Yu, Russell, & Sternad, 2003). The preferred frequency hy-
pothesis predicted that when people move, they would do so
close to or at the preferred frequency of the moved limb. In
particular, they would avoid moving slowly in the most crit-
ical conditions of the present experiment, those conditions
in which the driving period was long enough for participants
not to have to move quickly to accomplish the task. One
way they could do so is to adopt a stereotypical movement
pattern in which they only vary their dwell times on the tar-
gets, keeping their movement times approximately constant.
This strategy would be like the one shown in walking (e.g.,
Herman, Wirta, Bampton, & Finley, 1976).

Method

Participants moved a handheld dowel back and forth be-
tween two circular targets on a tabletop in time with a
metronome that clicked at eight driving periods ranging, in
equal frequency steps of 0.3 Hz, from 370 ms (2.7 Hz fre-
quency) to 1667 ms (0.6 Hz frequency). Participants were
asked to bring the base of the dowel onto one target and then
the other in time with the metronome. No other instruction
was given about timing. Thus, nothing was said about how
the movements should be carried out to achieve the goal of
synchronizing the landings of the dowel base onto the two
targets in time with the metronome.

In a control condition, we asked participants to perform
the back-and-forth tapping task in the absence of an external
metronome. Our reason for including this condition was to
obtain estimates of each participant’s preferred movement
period. We were interested in the possibility that participants
avoided deviating too much from their preferred rates in the
experimental conditions.

Participants

Eight neurologically healthy right-handed people (5
males, 3 females) participated. They were drawn from the

FIGURE 1. Experimental setup, rendered in MATLAB
(MathWorks, Natick, Massachusetts). Participants sat at a
table and moved a dowel back and forth between the two
target positions in time with a metronome. Each trial started
on the right target and finished once participants landed on
the right target the 20th time.

undergraduate psychology participant pool at Pennsylvania
State University. Participants ranged in age from 18 to 22
years. We evaluated handedness with the Edinburgh handed-
ness inventory (Oldfield, 1971). All participants said that they
used their right hand for at least 8 of 11 tasks mentioned. All
participants used their dominant (right) hand in all the con-
ditions. The Pennsylvania State Institutional Review Board
approved the experiment.

Procedure

Figure 1 shows the experimental setup. Participants sat at a
table in which the horizontal surface had two circular targets
made of red foam (8 cm diameter, 0.2 cm thick). The centers
of the targets were spaced 30 cm apart. The target diameters
were large enough to keep precision requirements low. The
manipulandum was a 99-g wooden dowel that was 20 cm
long and 3 cm wide.

Participants lined up their right shoulder with the midpoint
between the two targets so they could perform the move-
ments with the arm extended. Participants’ movements were
recorded with three infrared light emitting diodes (IRED)
attached to the top edge of the dowel at equal angular in-
tervals. We used multiple IREDs to ensure that the position
of the dowel would always be in view of the OPTOTRAK
3020 motion analysis camera system (Northern Digital Inc.,
Waterloo, Ontario, Canada) used to record the data at 100
Hz.

Before the start of each trial, the participants held their
dowel with their dominant hand, keeping the base of the
dowel on the right target circle. After a few beats of the
metronome, once the participants felt that they had internal-
ized the beat, they moved back and forth between the targets

30 Journal of Motor Behavior

Human Arm Movement

FIGURE 3. Mean asynchrony error (±1 SE) as a function
of driving period. Negative values indicate that target arrivals
tended to occur before the onset of metronome beats.

Number of Velocity Peaks

Figure 6 shows the mean number of velocity peaks per
intertarget movement (±1 SE) as a function of driving period.
The pattern of results was similar when we considered the
mean number of velocity peaks as a function of movement
time.

The ANOVA revealed a main effect of driving period on the
mean number of velocity peaks per inter-target movement,
F(1.46, 10.24) = 7.70, p <.05, such that the mean number
of velocity peaks per inter-target movement increased with
increasing driving periods. Figure 6 suggests that the relation
between the mean number of velocity peaks and driving
period was close to linear.

Discussion

The question we sought to address in the present study
was whether transitions in arm movement patterns would oc-
cur when people moved a handheld dowel between targets
in time with a metronome that clicked at each of a num-
ber of frequencies. Following observations in locomotion
and other multilimb coordination tasks, we predicted that
discontinuous transitions would occur at some metronome
rates. An alternative hypothesis was motivated by Viviani
and Terzuolo’s (1980) rate-scaling model according to which
movement time should scale continuously with driving pe-
riod. The third hypothesis we considered was based on the
notion of preferred frequency of movement, according to
which participants would adhere to their preferred movement
speeds and would satisfy the task requirement of placing the
base of the dowel on the targets in time with the metronome
principally by inserting longer dwell intervals when the re-
quired frequency was low.

FIGURE 4. (A) Dwell (±1 SE) and movement times (±1
SE) as a function of driving period. The solid unity line
indicates the driving periods generated by the metronome.
The dotted horizontal lines indicate mean movement times
(±1 SE) generated when moving in the self-paced tri-
als. (B) Proportional dwell times (±1 SE) as a function
of driving period. The horizontal lines indicate mean val-
ues (±1 SE) generated when moving in the self-paced
trials.

Our data did not support the first hypothesis. The results
clearly showed that the quantitative changes in dwell time,
movement time, and peak velocity occurred gradually, even
though for most dependent measures, changes were pro-
nounced for the shorter periods and leveled out for peri-
ods longer than approximately 833 ms. The foregoing com-
ments pertain to the average data (averages across partici-
pants), but we also inspected the data of individual partic-
ipants and did not find evidence for abrupt transitions in
any of them. Hence, we did not find support for the first
hypothesis.

With regard to the second rate-scaling hypothesis, none of
our participants behaved in a way that was consistent with

2010, Vol. 42, No. 1 33

https://www.youtube.com/watch?v=0woPde7OE1k
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WHY CAN’T WE PRODUCE SLOW AND SMOOTH

MOVEMENTS?

I Skilled point-to-point movements consist of a single
velocity peak

I However, there are limits to our performance
I What happens when we make very slow movements?
I Will a perfectly planned, slow movement show a single

velocity peak?
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EXPERIMENTAL SETUP
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I We used a one-person version of the mirror game
I The subject moves a stylus left-right to move a blue ellipse,

and tries to match the location of a red ellipse moving on
the screen

I A range of movement frequencies and amplitudes
(velocities) were selected
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EXTRACTION OF JITTER / CALCULATION OF

CO-CONFIDENT (CC) MOTION

Co-confident (CC) motions

Jitter

I Based on previous studies (Noy et al.,2011), we used jitter
(similar to acceleration zero crossings - AZC) as a measure
of smoothness.

I We then looked for regions of movement where there is no
unnecessary jitter (AZC) and accuracy is high, these are
termed co-confident motion (CC)
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DEPENDENCE OF CC ON MOVEMENT FREQUENCY
NOY, WEISER & FRIEDMAN, 2017. FRONT. PSYCH

CC regions

CC regions

I Periods of CC motion were strongly dependent on the
movement duration
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CC PROBABILITY IS A FUNCTION OF MOVEMENT

FREQUENCY
NOY, WEISER & FRIEDMAN, 2017. FRONT. PSYCH
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I CC probability was strongly dependent on movement
frequency (i.e. duration)

I i.e. Subjects were unable to perform smooth, low
frequency movements

I Movement speed had little effect
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WHAT ARE THE REAL LIMITS OF PERFORMANCE?

I What is limiting slow, smooth movements?
I Lack of familiarity (motor primitives)?
I Inertial properties of the limbs (natural frequency)?
I Biomechanical constraints (motor units, etc.)?
I Tremor?
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PRELIMINARY RESULTS - EXPERTS

I We compared experts in slow movement (Tai Chi
practitioners with > 10 years experience) to a control
group of Karate practitioners
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PRELIMINARY RESULTS - EXPERTS (TAI CHI)

I Expert Tai Chi practioners (> 10 years experience) can
(better) produce slow, smooth movements
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PRELIMINARY RESULTS - EXPERTS (TAI CHI)
I This difference is also observed in terms of the jitter

frequency (i.e. how often they correct their movements)
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INTERIM SUMMARY

I Part of our inability to perform slow, smooth movements
appears to come from a lack of movement primitives for
slow, smooth movements

I This may be because of a lack of practice in day-to-day life
- usually when we want to move, we make relatively fast
movements

I We may need to generate new movements primitives in
order to allow us to produce slow, smooth movements

I There is still clearly a lower limit in terms of movement
speed (for smooth movements), but it is unclear what is
the limiting factor
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MOTOR LEARNING

I Motor learning is the process of learning to perform a task
in a qualitatively better way

I Complex movements may be constructed from the
combination of a number of motor primitives

I Motor learning can then involve the generation of new
motor primitives, and/or changes in the way motor
primitives are combined
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COARTICULATION

I Some types of movements are difficult and / or time
consuming to learn

I An example of this is movements that require
coarticulation

I Coarticulation is a term used in speech production, where
the articulator movements for a given sound depend on
surrounding sounds (Ostry et al. 1996 J. Neurosci.)

1572 J. Neurosci., February 15, 1996, 16(4):1570-1579 Ostry et al. l Coarticulation of Jaw Movements 
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Figure 2. The frame of reference for jaw motion. Note that the HORI- 
ZONTAL axis is aligned with the occlusal plane. 

repetitively at a normal sound level and rate. Approximately 10 samples 
of each utterance type were recorded. Six speakers were tested. 

Jaw motions were recorded at 200 Hz in three spatial dimensions using 
Optotrak, an optoelectronic imaging system. The system tracks the mo- 
tion of infrared emitting diodes (IREDs), which are attached to the jaw 
and the head. The IREDs on the head (6) were attached to a plastic 
frame and were used to correct the data to a head-based frame of 
reference. The jaw IREDs (4) were glued to a light-weight acrylic and 
metal dental appliance that was attached to the mandibular teeth using a 
dental adhesive. The appliance was seated bilaterally and custom-molded 
for each subject to fit the contour of the buccal surface of the teeth. 

The three-dimensional raw data for each IRED were low-pass filtered 
using a second-order zero phase lag Butterworth filter. The cut-off 
frequency was chosen on the basis of Fourier analysis and through direct 
comparison of raw and filtered records. A filter frequency of 10 Hz 
corresponded to points at which the signal power had dropped 40 dB 
from its maximum. Jaw orientation angles and positions were derived 
using vendor-supplied software. Figure 2 shows the coordinate system in 
which jaw movements were represented. Jaw positions and orientation 
angles were characterized with respect to the position of the condyle 
center at occlusion. The coordinates of this point were obtained by 
palpation to locate the condyle center and then by measuring the hori- 
zontal and vertical distances from ,‘that point to a known reference 
location (tip of the mandibular incisors). The relevant movements were 
identified by first locating the sound boundaries in the acoustic signal and 
then locating the corresponding movement start and end on the basis of 
the tangential velocity of one of the four jaw markers. Because the four 
markers were rigidly attached to the dental appliance and all were equally 
close to the mandibular teeth, each of the four markers gave comparable 
estimates; however, one specified marker was used for all subjects in all 
cases. Movement start and end were defined as the point closest in value 
to 0 cmisec. 

RESULTS 
The basic patterns of jaw motion in speech are shown in Figure 3. 
It can be seen that the pitch angle, horizontal translation, and 
vertical translation all contribute significantly to the movement. 
The roll angle is also seen to vary in a systematic manner; 
however, its magnitude is small. Our previous work showed that 
there are essentially two degrees of freedom in jaw movements in 
speech: the sagittal plane jaw orientation (pitch) and a combina- 
tion of horizontal and vertical translation (Ostry and Munhall, 
1994; Bateson and Ostry, 1995). Jaw motions in these degrees of 
freedom typically covary. During jaw opening, the jaw rotates 
downward and translates forward [consonant-vowel (CV) transi- 
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Figure 3. Individual record of repetitions of sakus at normal volume and 
speech rate. 

tion]. During jaw-closing phase, the jaw rotates upward and trans- 
lates backward (VC transition). 

Jaw model predictions 
Anticipatory coarticulation 
Figure 4 shows the simulated jaw-motion kinematics (solid lines) 
and underlying control signals (dashed lines) under three different 
conditions designed to explore the possible origins of anticipatory 
coarticulation. In each case, we show a simulated VCV sequence 
involving jaw closing followed by jaw opening. The simulated 
kinematics of sagittal plane rotation and horizontal translation are 
shown. 

In the simulations of anticipatory coarticulation (Fig. 4), we 
have varied the rate and/or duration of the equilibrium shifts 
associated with the jaw opening movement (CV transition) and 
have held constant the rate and duration of the equilibrium shifts 
for the initial closing movement. Thus, regardless of the rate or 
duration of the equilibrium shifts for the final transition, there is 
a single shift rate and duration for the initial VC closing move- 
ment. This is equivalent to varying the identity of the final vowel 
while holding the initial vowel constant. By examining the simu- 
lated kinematics under these conditions, we can assess the extent 
to which kinematic patterns characteristic of anticipatory coar- 
ticulation may arise when at the level of the central control signals 
no account is taken of upcoming context. 

In Figure 4A (left), we see that the rate of equilibrium shift for 
the final jaw-opening movement (CV transition) is similar for 
movements of different amplitude, but the shift duration varies. 
Under these conditions the simulated kinematic patterns of jaw 
rotation and translation are identical throughout the initial jaw- 
closing phase and diverge only as final position is achieved during 
jaw opening. 
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Figure 6. Comparison of empirical data and model predictions for anticipatory coarticulation. Note that kinematic patterns comparable with those 
observed empirically do not involve any adjustment in central commands with changing phonetic context. The curves shown in the top left are mean data 
for a single subject in the conditions shown. The curves were time-normalized and aligned for initial position before averaging. 

In Figure 4B, both the rate and the duration of equilibrium shift 
associated with jaw opening vary (CV transition) such that move- 
ment amplitude is constant. Here, if one were to measure the 
simulated kinematic amplitude and duration of the initial jaw- 
closing phase (from zero velocity,during the initial vowel to zero 
velocity during consonant closure), it would be seen that the 
amplitude and duration of the initial movements increase as the 
speed of the final jaw-opening movement decreases. 

In Figure 4C, the rate of equilibrium shift associated with jaw 
opening (CV transition) varies, whereas the shift duration is 
constant. This results in movements of different amplitude but 
comparable duration. Here again, if one were to measure the 
kinematic amplitude and duration of the initial jaw-closing move- 
ment, it would be seen that the amplitude and duration of the 
simulated initial movement increase as the amplitude of the final 
movement decreases. Here as well, the control underlying the 
initial movement is not adjusted for changes in upcoming context. 

Carryover coarticulation 
Figure 5 shows comparable simulations that examine the simu- 
lated jaw motion kinematics of carryover coarticulation. As in the 
preceding figure, the simulated kinematics (solid lines) and control 
signals (dashed lines) are shown for three different conditions, 
which were selected to explore carryover coarticulation. As above, 
simulated VCV sequences involving jaw closing followed by jaw 
opening are shown. 

For the simulations of carryover coarticulation, the rate and/or 
duration of the equilibrium shifts for the initial jaw-closing move- 
ment are varied, whereas the rate and duration of the shifts 
underlying the final jaw opening movement are fixed. This is 
comparable to kinematic studies in which the identity of the initial 
vowel is varied while the final vowel is held constant. As in our 
previous example, by examining the simulated kinematics we can 
assess the extent to which the typical patterns of carryover coar- 
ticulation emerge when control signals for the final movement are 
fixed. 

Figure S-C shows comparable results: the simulated ampli- 
tude and duration of the final jaw-opening movement increase as 
the amplitude of the initial jaw-closing movement decreases. This 
is the case when the rate of equilibrium shift for the initial 
movement is fixed (A), when the rate of shift is varied but its 
amplitude is fixed (B), and when both the rate of shift and the 
amplitude are varied (C). 

Empirical observations 
Anticipatory coarticulation 
The empirical patterns of coarticulation observed here are similar 
to the patterns predicted in the simulations. Figure 6 provides a 
summary of the main findings for anticipatory coarticulation using 
data for pitch as an example. It shows anticipatory coarticulation 
measured empirically and comparable patterns predicted by the 
model. Figure 6 (top) shows the average empirical data for a single 
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Figure 10. Comparison of empirical data and model predictions for carryover coarticulation. The top left gives mean data for a single subject. The cuWeS 
were time-normalized and aligned for initial position before averaging. 

load force as determined by the mass and acceleration of the 
object (Flanagan and Wing, 1993). 

The sources of coarticulation revealed in the present study 
should be distinguished from previous accounts of coarticulation. 
Because the observed empirical variations may be unplanned, this 
demonstration should not be equated with the results of so-called 
“scan ahead” mechanisms (Henke, 1966) nor is the variation 
observed here equivalent to that in kinematic blending schemes in 
which it is proposed that coarticulation arises as the result of 
overlapping control signals for vowel- and consonant-related 
movements (Fowler, 1977). As the present simulations show, this 
result is presumably attributable to neither a mixing of commands 
nor an adjustment for context but rather, as suggested above, to 
sequential control signals, muscle properties, and jaw dynamics. 

A clarification concerning the notion of overlapping of com- 
mands may be in order. Note that in the simulations there is no 
temporal overlap of the control signals themselves. Nevertheless, 
the control signals do overlap the simulated kinematics. For 
example, the control signals associated with the jaw-opening 
movement are initiated before the simulated jaw closure; how- 
ever, this is not equivalent to overlapping control. Also note that 
the present demonstration suggests that a single explanation can 
be offered to account for both anticipatory and carryover coar- 
ticulation of the mandible in VCV utterances, as spoken by the 
subjects in a majority of the cases. 

The appropriateness of the A model of jaw movement rests 

largely on the availability of sources of afferent input to MNs and 
the effect of that input. (The model suggests that afferent input 
associated with muscle length and velocity is summed with direct 
central inputs to 01 MNs.) Muscle-spindle receptors may provide 
this information in jaw-closer muscles. In jaw-opener muscles in 
humans, however, the number of muscle spindles is few. Never- 
theless, tonic stretch and unloading reflexes can be recorded in 
jaw-opener muscles (Lamarre and Lund, 1975; Neilson et al., 
1979). We have also recorded in jaw openers both stretch and 
unloading reflexes, the latter at 10 to 20 msec latencies (our 
unpublished observations). These demonstrations are consistent 
with the possibility that afferent input to jaw-opener MNs may 
arise directly from jaw-opener muscle afferents (including non- 
spindle afferents). The presence of a tonic vibration reflex in jaw 
openers (Hellsing, 1977) indicates that inputs may also arise from 
mechanoreceptors. Moreover, reflex connections between jaw- 
closer muscles and jaw-opener MNs in the rat may also provide 
the necessary afferent input (van Willigen et al., 1986). 

A number of features of the model and of the findings should 
be noted. In Figures 6 and 10, we have shown empirical patterns 
of coarticulation that correspond to version C of the model in 
which both the rate and duration of the equilibrium shift were 
varied (see Figs. 4 and 5). We have used version C for demon- 
stration purposes because it provides the best overall fit to the 
data. Consistent with empirical observations, it predicts, in addi- 
tion to the observed coarticulatory patterns, relatively constant 
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COARTICULATION

I A previous study (Sosnik et al., 2004) showed that subjects
require multiple days to qualitatively improve in a
drawing task involving connecting multiple dots

profile) to co-articulated ones (two curved paths, with their
respective velocity profiles) suggested that participants
were planning the first and last pairs of segments each in
its entirety (global-planning). To test this conjecture we
tested the fit between the predictions of the minimum jerk
model and actual performance data. The minimum jerk
model predicts that for a movement with a given start and
end position and one via-point, the durations of the motion
from the initial position to the via-point (t1) and from the

via-point to the final position (t2) are roughly equal,
except for cases in which the via-point is very close to
either one of the two movement end-points (Flash and
Hogan 1985). The latter observation was referred to as the
isochrony principle (Viviani and Terzuolo 1982)—the
phenomenon that movement durations of large and small
segments of a trajectory are roughly equal. For such a two-
segment sequence an isochronicity index can be derived
by dividing the first segment duration (t1) by the total
duration of the two segments (t1+t2.) In the case of
isochronicity the value of the index will be 0.5.

We looked at the evolving changes in both the position
of the via-point and in the isochronicity index throughout
practice. In the first training day, when participants
connected the four targets with four straight paths, the
first via-point was found to lie on the first target (target B)
(Fig. 4A, Day 1 left panel) with marked isochronicity
between the first two segments (isochronicity index
0.536), i.e., each of the two segments, although having a
different length, was generated within a roughly equal
movement duration (Fig. 4A, Day 1 right panel). At day 2,
a semi-curvilinear path was generated between target pairs
AB and BC. The via-point location (i.e., minimum
velocity) gradually shifted from target B toward target
C, thus no longer coinciding with the location of target B
(Fig. 4A, Day 2 left panel), and the isochronicity between
the two movement segments was lost (isochronicity index
of 0.645) (Fig. 4A, Day 2 right panel). Thus, more time
was devoted to the movement between point A and the
via-point than to the movement from the via-point to target
C. By the third day of practice, targets A, B and C were
connected with a curved path ABC (Fig. 4A, Day 3 left
panel), the via-point position shifted further towards target
C and the isochronicity index increased to 0.689 (Fig. 4A,
lower right panel).

The model predicts that the two segments should have
roughly equal durations except when the via-point is quite
close to the initial or final targets (Fig. 4B). We tested
whether the measured values of the isochronicity index
followed the trend dictated by the minimum jerk model
according to the location of the via-point, i.e., according to
the value of the ratio of distances (d1/d1+d2) (see Fig. 4B
for the definitions of d1 and d2). This analysis has shown
that on the second training day, when the first via-point
began shifting toward the second target (target C), the
measured isochronicity index did not match the minimum
jerk model’s predicted value of the ratio of distances
(Fig. 4B, lower panel). On the following days of training,
however, a closer match between the predicted and
measured values of the isochronicity index was obtained,
and the variance of the data around the model’s predicted
curve decreased. The fit to the model’s predicted curve
improved with practice, and was almost perfect by day 5,
suggesting that with progressive training, participants’
performance converged on a strategy of movement fluency
as reflected by the minimum jerk model. In contrast, there
was no change, throughout training, in the position of the
second via-point (which resided on target D). The

Fig. 3A, B The dependence of co-articulation on the spatial co-
alignment between the lines connecting consecutive target pairs. A
Relatively high spatial alignment (obtuse angle) between the lines
connecting target pairs AB and BC, or CD and DA. For each training
day, upper and lower plots denote trajectories and velocity profiles,
respectively. B Relatively low spatial alignment (acute angle)
between the lines connecting all consecutive target pairs (notations
as in A). No co-articulation evolved throughout training

426
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The model predicts that the two segments should have
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followed the trend dictated by the minimum jerk model
according to the location of the via-point, i.e., according to
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for the definitions of d1 and d2). This analysis has shown
that on the second training day, when the first via-point
began shifting toward the second target (target C), the
measured isochronicity index did not match the minimum
jerk model’s predicted value of the ratio of distances
(Fig. 4B, lower panel). On the following days of training,
however, a closer match between the predicted and
measured values of the isochronicity index was obtained,
and the variance of the data around the model’s predicted
curve decreased. The fit to the model’s predicted curve
improved with practice, and was almost perfect by day 5,
suggesting that with progressive training, participants’
performance converged on a strategy of movement fluency
as reflected by the minimum jerk model. In contrast, there
was no change, throughout training, in the position of the
second via-point (which resided on target D). The
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profile) to co-articulated ones (two curved paths, with their
respective velocity profiles) suggested that participants
were planning the first and last pairs of segments each in
its entirety (global-planning). To test this conjecture we
tested the fit between the predictions of the minimum jerk
model and actual performance data. The minimum jerk
model predicts that for a movement with a given start and
end position and one via-point, the durations of the motion
from the initial position to the via-point (t1) and from the

via-point to the final position (t2) are roughly equal,
except for cases in which the via-point is very close to
either one of the two movement end-points (Flash and
Hogan 1985). The latter observation was referred to as the
isochrony principle (Viviani and Terzuolo 1982)—the
phenomenon that movement durations of large and small
segments of a trajectory are roughly equal. For such a two-
segment sequence an isochronicity index can be derived
by dividing the first segment duration (t1) by the total
duration of the two segments (t1+t2.) In the case of
isochronicity the value of the index will be 0.5.

We looked at the evolving changes in both the position
of the via-point and in the isochronicity index throughout
practice. In the first training day, when participants
connected the four targets with four straight paths, the
first via-point was found to lie on the first target (target B)
(Fig. 4A, Day 1 left panel) with marked isochronicity
between the first two segments (isochronicity index
0.536), i.e., each of the two segments, although having a
different length, was generated within a roughly equal
movement duration (Fig. 4A, Day 1 right panel). At day 2,
a semi-curvilinear path was generated between target pairs
AB and BC. The via-point location (i.e., minimum
velocity) gradually shifted from target B toward target
C, thus no longer coinciding with the location of target B
(Fig. 4A, Day 2 left panel), and the isochronicity between
the two movement segments was lost (isochronicity index
of 0.645) (Fig. 4A, Day 2 right panel). Thus, more time
was devoted to the movement between point A and the
via-point than to the movement from the via-point to target
C. By the third day of practice, targets A, B and C were
connected with a curved path ABC (Fig. 4A, Day 3 left
panel), the via-point position shifted further towards target
C and the isochronicity index increased to 0.689 (Fig. 4A,
lower right panel).

The model predicts that the two segments should have
roughly equal durations except when the via-point is quite
close to the initial or final targets (Fig. 4B). We tested
whether the measured values of the isochronicity index
followed the trend dictated by the minimum jerk model
according to the location of the via-point, i.e., according to
the value of the ratio of distances (d1/d1+d2) (see Fig. 4B
for the definitions of d1 and d2). This analysis has shown
that on the second training day, when the first via-point
began shifting toward the second target (target C), the
measured isochronicity index did not match the minimum
jerk model’s predicted value of the ratio of distances
(Fig. 4B, lower panel). On the following days of training,
however, a closer match between the predicted and
measured values of the isochronicity index was obtained,
and the variance of the data around the model’s predicted
curve decreased. The fit to the model’s predicted curve
improved with practice, and was almost perfect by day 5,
suggesting that with progressive training, participants’
performance converged on a strategy of movement fluency
as reflected by the minimum jerk model. In contrast, there
was no change, throughout training, in the position of the
second via-point (which resided on target D). The
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between the lines connecting all consecutive target pairs (notations
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I They suggested that a new motion “primitive” is only
learned after the system has reached optimal performance

I We tested whether learning by observation can enable
faster learning of this skill
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EXPERIMENTAL PROTOCOL

 

SLOWED OBSERVATION 
GROUP (SOG)

6 blocks x 30 trials 
physical training alternating 

with 30 observation trials 
(1/3 original expert’s speed)

OBSERVATION GROUP (OG)
6 blocks x 30 trials 

physical  training alternating 
with 30 observation trials 
(original expert’s speed)

Pre test 
(60 trials) 

RANDOM MOTION CONTROL 
GROUP (RMCG)

6 blocks x 30 trials 
physical training alternating 
with 30 observation trials of 

random dot motion

DOUBLE PHYSICAL TRAINING 
CONTROL GROUP (DPTCG)

6 blocks x 60 trials 
physical training

Consolidation 
test (60 trials) 

Scaled test 
(60 trials) 

Mirror Reverse 
test  (60 trials) 

Post test 
(60 trials) 

Frame from the expert 
model observation trial

Day 1 Day 2
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RESULTS - TRAJECTORIES
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RESULTS - TANGENTIAL VELOCITY PROFILES
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RESULTS - MOVEMENT DURATION(a) (b)
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I Movement time decreased almost instantaneously only for
the observation groups

I This improvement was maintained even after they
stopped observing the sequence, and after 24 hours
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COARTICULATION MEASURE

I Coarticulation enables faster task performance, i.e. they
overlap production of “submovements”

I We defined a coarticulation score to quantify this: ratio of
the height of the troughs to the peaks in the tangential
velocity profile, times 100
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RESULTS - COARTICULATION MEASURE
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I Large, instant differences are observed in terms of the
coarticulation measure

I i.e., the participants are not just moving faster, but also
changing the spatial aspects of the movement



Background Slow / smooth Motor learning Decision making

RESULTS - COARTICULATION MEASURE

(a) (b)

(c) (d)

I The observation groups continue to improve during the
training, after the step-wise increase

I They did not, however, reach the level of the expert - likely
because they used the same primitives rather than
generating new primitives
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INTERIM SUMMARY

I Observation of an expert model induced an instant, robust
improvement in performance - a Eureka moment

I The improvement remained at post-training and 24 hr
I Despite the large amount of improvement, new kinematic

primitives were not produced
I Observation of hand movements of an expert model

coaligned with self-produced movements during training
can significantly condense the time-course of ecologically
relevant drawing / writing skill mastery.
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BACKGROUND - RESPONSE TIMES (RT)

I Response times (RT) are the typical way to study the
Simon task

I Reaction times measure the end of the decision making
process, and require us to infer what is going on during the
decision making

I Ideally we would like a way to probe the ongoing decision
process
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ARM MOVEMENT STUDIES

I Arm pointing movements are useful because:
I They are natural responses
I They take long enough that you can change your mind

during the movement
I We can force people to start moving before they make their

final decision
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METHODS
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SUBMOVEMENT DECOMPOSITION

I Rather than working with the whole trajectory, we
decompose the movement into submovements - discrete,
stereotypical movements that are serially concatenated
and overlapping in time

I They are discrete rather than continuous at the planning
stage, and planned in a feed-forward manner (i.e., they
reflect intermittent control)

I This means that all the properties of a submovement are
proscribed at the start of the movement (e.g. amplitude,
direction, timing)
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SUBMOVEMENT DECOMPOSITION - EXAMPLE
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I This method gives the onset times T0 and amplitudes
Dx,Dy of the submovements, which are a compact
description of intent at a specific time.
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CUMULATIVE SUBMOVEMENT AMPLITUDE

I We use cumulative submovement amplitude (e.g.
Finkbeiner & Friedman, 2011) as a proxy for the decision
making process

I We look only at the left-right planned amplitudes of the
submovements
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CUMULATIVE SUBMOVEMENT AMPLITUDE
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I The cumulative submovement amplitude is a measure of
intent - when it is 1 or -1, the subject has made a decision.

I When it is between -1 and 1, the subject has not yet made a
final choice, but the value reflects the decision making
process and biases
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RESULTS - TRAJECTORIES
Congruent and incongruent movements show different
trajectories, as do visual and tactile
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RESULTS - CUMULATIVE SUBMOVEMENT AMPLITUDE
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I Cumulative submovement amplitude allows us to
decompose the movements into two processes - an
automatic and a controlled

I We are then able to accurately model these movements and
understand these component cognitive processes
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INTERIM CONCLUSIONS

I Using arm movements provides further insights into the
temporal dynamics of decision making processes

I In particular, in situations with conflict we can extract the
temporal dynamics of the multiple processes
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CONCLUSIONS - INTERMITTENT CONTROL

I Intermittent control provides a framework for studying
multiple questions in human motor control, including
I movement production
I motor learning
I decision making

I It is also a useful tool when studying, analzying and
modeling
I Rehabilitation
I Development

I Intermittent control presents a potential solution to explain
our ability to make exquisite dexterous movements despite
our slow feedback loops
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